下面是出国留学网为您准备的“四年级数学手抄报内容”,希望您喜欢!更多数学手抄报内容请关注出国留学网手抄报栏目!
【四年级数学手抄报内容一】
【四年级数学手抄报内容二】
【四年级数学手抄报内容三】
【四年级数学手抄报内容四】
【四年级数学手抄报内容五】
【四年级数学手抄报内容六】
小编精心推荐
下面是出国留学网为您准备的“三年级数学手抄报内容”,希望您喜欢!更多数学手抄报内容”请关注出国留学网手抄报栏目!
小编精心推荐
下面是出国留学网为您准备的“二年级数学手抄报内容”,希望您喜欢!更多数学手抄报内容”请关注出国留学网手抄报栏目!
小编精心推荐
1+1=?数学是门很有趣的课程,一年级的数学手抄报是怎样的呢?出国留学网为您准备了“一年级数学手抄报内容”,希望您喜欢!更多数学手抄报内容请关注出国留学网手抄报栏目!
小编精心推荐
数学在科学和生活等等方面是无处不在的。下面是由出国留学网整理的,欢迎阅读。
小学数学手抄报内容一:所向披靡的“数学怪兽”
1854年4月29日,亨利·庞加莱出生于法国南锡一个学者家庭中。庞加莱家族在法国拥有极高声望,亨利·庞加莱的父亲和姐夫都是南锡大学的教授,而其表兄弟雷蒙·庞加莱更是法兰西学院院士,并于1913—1920年出任法国总统。
因为视力极差,所以庞加莱在音乐和体育课上表现一般,除此之外,庞加莱在各方面都称得上是成绩优异。庞加莱的数学才华在上大学之前已经显现出来。他的数学教师形容他是一只“数学怪兽”,这只怪兽席卷了包括法国高中学科竞赛第一名在内的几乎所有荣誉。
1873年,庞加莱进入巴黎综合理工大学(école Polytechnique),在那里他得以从事他擅长的数学,师从著名数学家查尔斯·厄米特,并发表了他第一篇学术论文。后来庞加莱继续跟随厄米特攻读博士学位,他于1879年获得巴黎大学博士学位,1887年入选法国科学院,后任院长,并于1906年被选为法兰西学院院士,这是法国学者的最高荣誉。1875年前后,庞加莱从理工大学毕业,进入南锡矿业大学继续学习数学和采矿。毕业后,他加入了法国矿业集团(CorpsdesMines)成为法国东北部矿产区的一名巡视员,与此同时,庞加莱继续在厄米特的指导下从事研究。在他一生的大部分时间里,庞加莱都不曾放弃他的工程事业,他在1881至1885年间负责北方铁路的建设工作,数年后成为法国矿业集团的总工程师,最后在总监的位置上退休。
三体问题,一鸣惊人
1885年,在刚创刊不久的瑞典数学杂志ActaMathematica的第七卷上出现了一则引人注目的通告:为了庆祝瑞典和挪威国王奥斯卡二世在1889年的六十岁生日,ActaMathematica将举办一次数学问题比赛,悬赏2500克朗和一块金牌。比赛的题目有四个,其中第一个就是找到多体问题的所有解。这是天体物理学中三体问题的一个推广。而庞加莱在读博士期间就已经开始研究太阳系中的多体问题。
但庞加莱最终却没有成功给出一个完整的解答,因为他发现这个系统的演变经常是混沌的,“混沌”是说如果初始状态有一个小的扰动,例如一个体的初始位置有一个小的偏移,则后来的状态可能会有极大的不同。也就是说,如果该小变动不能被我们的测量仪器所探测,则我们不能预测最终状态为何。他的工作令评委印象深刻,因此还是在1888年赢得了奖金,时年34岁。
这是庞加莱学术生涯中第一个重要的奖项,1888年五月庞加莱在比赛截止日期前交上了他的论文,六个月后他就被宣布为获胜者。评委维尔斯特拉斯很有预见地指出这篇论文将开创天体力学历史上的一个新纪元。
数学、物理界的“十项全能”
从1881年开始直到其去世,庞加莱都在巴黎索邦大学任教,他曾教授过的课程包括物理、实验力学、数学物理、概率论、天体力学和天文学。一个有趣的小插曲足以证明庞加莱在当时的地位:当军政部长下令砍掉“没用的天文学”课程时,庞加莱说“我来教这门课”,官员们就只好闭嘴了,因为谁也不敢阻拦庞加莱开设任何科学课程。
庞加莱的一生中在数学和物理的各个领域都有建树,其中以其本人命名的科学发现就有庞加莱球面、庞加莱映...
手抄报版面编排和美化设计,要围绕着主题,根据主题和文章内容决定形式的严肃与活泼,做到形式与内容的统一。您可以常登陆手抄报网,上面有很多关于手抄报的内容供您借鉴和选择。
通过学习,大家知道什么是长方体和正方体的表面积,也知道了怎么求表面积。不过下面的问题不是和求面积相关的,我们换个角度来考考你对正方体的认识。
一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。在这些小正方体中:
(1)三个面涂有红色的有多少个?
(2)两个面涂有红色的有多少个?
(3)一个面涂有红色的有多少个?
(4)六个面都没有涂色的有多少个?
下面我们结合图示,分别来看看这几个问题。
(1)三个面都涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。
(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。
(3)一个面都涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。
(4)六个面都没有涂色的在大正方体的中间,有两种算法:
1、1000-8-96-384=512(个);
2、8×8×8=512(个)。
小编精心推荐
推荐更多