出国留学网专题频道数学考试复习栏目,提供与数学考试复习相关的所有资讯,希望我们所做的能让您感到满意!

数学考试复习方法及经验

数学考试复习 数学考试复习方法 有关数学考试复习方法

  高三数学复习是许多小伙伴头痛的问题,那么数学考试复习方法及经验有哪些呢。以下是由出国留学网编辑为大家整理的“数学考试复习方法及经验”,仅供参考,欢迎大家阅读。

  数学考试复习方法及经验

  1、课后一分钟回忆及时复习

  数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,以免欲速则不达。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,就抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。同时预习还有利于培养自己的自学能力。

  上完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题;分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,赶紧补完,这样不仅能把当天上课内容巩固下来,而且也能检查当天课堂听课的效果如何,同时也可改进听课方法及提高听课效果。我们可以简记为“一分钟的回忆法”。

  2、避免“会而不对”的错误习惯

  解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。但在正规考试中即使答案对了,由于过程不完整而扣分较多。还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。

  “会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。必要时要作些记录,也就是“错题笔记”。每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。

  3、重视“一题多解”“多题同解”

  学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。进入复习阶段后,大量的试题铺天盖地而来,这时我们一定要保持清醒的头脑,要有所为,有所不为。学习数学不做题肯定不对,但不能陷入题海不能自拔,要充分发挥教材在知识形成过程中的作用,注意典型例题的示范价值,能够举一反三,重视“一题多解”和“多题同解”,做到以一题带一片。

  要有针对性地做题,典型的题型,应该规范完成,同时还应了解自己,有选择地做一些课外的题;要循序渐进,由易到难,对做过的典型题型有一定的...

与数学考试复习相关的实用资料

兴安GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  GRE数学怎么复习呢?面对市面上众多的GRE数学考试复习资料,到底选哪些比较适合呢?下面出国留学网为大家提供兴安GRE数学考试复习备考总结,考生们可以根据自己的实际情况进行选用。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Mur...

与数学考试复习相关的GRE数学

伊春GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  出国留学网小编为大家介绍一下伊春GRE数学考试复习备考总结的内容,希望各位考生看完之后能够了解GRE数学专项考试。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Murty,Graph theory with application...

与数学考试复习相关的GRE数学

白山GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  GRE数学怎么复习呢?面对市面上众多的GRE数学考试复习资料,到底选哪些比较适合呢?下面出国留学网为大家提供白山GRE数学考试复习备考总结,考生们可以根据自己的实际情况进行选用。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Mur...

与数学考试复习相关的GRE数学

辽源GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  出国留学网小编为大家介绍一下辽源GRE数学考试复习备考总结的内容,希望各位考生看完之后能够了解GRE数学专项考试。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Murty,Graph theory with application...

与数学考试复习相关的GRE数学

辽阳GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  出国留学网小编为大家介绍一下辽阳GRE数学考试复习备考总结的内容,希望各位考生看完之后能够了解GRE数学专项考试。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Murty,Graph theory with application...

与数学考试复习相关的GRE数学

本溪GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  出国留学网小编为大家介绍一下本溪GRE数学考试复习备考总结的内容,希望各位考生看完之后能够了解GRE数学专项考试。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Murty,Graph theory with application...

与数学考试复习相关的GRE数学

葫芦岛GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  出国留学网小编为大家介绍一下葫芦岛GRE数学考试复习备考总结的内容,希望各位考生看完之后能够了解GRE数学专项考试。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Murty,Graph theory with applicatio...

与数学考试复习相关的GRE数学

锦州GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  出国留学网小编为大家介绍一下锦州GRE数学考试复习备考总结的内容,希望各位考生看完之后能够了解GRE数学专项考试。

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. Murty,Graph theory with application...

与数学考试复习相关的GRE数学

鞍山GRE数学考试复习备考总结

GRE数学高分知识 GRE数学高分 GRE数学

  高分GRE数学需要掌握的知识。同学们如何应对备考gre数学考试呢?下面是为同学们搜索整理的鞍山GRE数学考试复习备考总结介绍。希望对同学们的gre数学考试有所帮助,下面一起来看看吧:

  一、高中知识

  各种三角诱导公式,和,差,倍,半公式与和差化积,积化和差公式,平面解析几何。

  说明:Cracking the GRE Math Test里面第一章就是复习高中知识,我看内容基本差不多了,大家也就不用另外找书复习了。

  二、数学分析

  极限,连续的概念,单变量微积分(求导法则,积分法则,微商),多边量微积分及其应用,曲线及曲面积分,场论初步。

  参考书:张筑生先生的3册《数学分析新讲》,Walter Rudin的Principles of Mathematical Analysis

  说明:Cracking the GRE Math Test用了两章来复习数学分析,基本够了。我只是另外看了一些场论的公式以及Fourier分析的一点内容。不过sub中有一些数学分析方面的题目很灵活,要你判断一个命题是否正确,对于错误选项如果想不出反例来就有些麻烦了,大家要注意。

  三、微分方程

  基本概念,各种方程的基本解法。

  参考书:Wolfgang Walter, Ordinary Differential Equations

  说明:以Cracking the GRE Math Test中的相关章节为主,一般不难。

  四、线性代数

  普通代数,艾森斯坦因法则,行列式,向量空间,多变量方程组解法,特征多项式及特征向量,线形变换及正交变换,度量空间。

  参考书:镇系之宝,张贤科老师的《高等代数学》,Seymour Lipschutz的Theory and Problems of Linear Algebra

  说明:Cracking the GRE Math Test这本书里面的东西也差不多够了,不过鉴于sub越来越难,大家还是回去翻翻张老师的书吧。

  五、初等数论

  欧几里得算法,同余式的相关公式,欧拉-费马定理。

  参考书:冯老师的《整数与多项式》

  说明:以Cracking the GRE Math Test相关章节为主。

  六、抽象代数

  群论及环域的基本概念及运算法则。

  参考书:冯老师的《近世代数引论》

  说明:抽象代数的内容最近几年越来越多,今年考试中考到了极大理想。还好我在做REA的题目的时候碰到了高斯整环的题目,所以回去好好翻了翻书。大家要认真准备这一部分的内容。

  七、离散数学

  命题逻辑,图论初步(基本概念,表示法,邻接and关联距阵,基本运算定理如V F-E=2),集合论(注意了解一下偏序的概念)。

  参考书:J. A. Bondy and U.S.R. M...

与数学考试复习相关的GRE数学

推荐更多