在考场上人与人拉开差距的除了平常的知识点的积累,还有面对考试题型能够有一个更好的解答思路,下面由出国留学网小编为你精心准备了“行测数量关系技巧:容斥问题求极值”,持续关注本站将可以持续获取更多的考试资讯!
行测数量关系技巧:容斥问题求极值
对于绝大部分考生而言,行测数量关系一直是比较难的专项,但是要想真正在笔试中遥遥领先数量部分还是要去攻破的。因此,针对数量所考察的所有题型我们也要由易到难的逐步攻破,在考场考试时学会挑出自己平时擅长的题型先入手。所以,今天就给大家分享下容斥这一考点。
容斥问题常规的考点有二者容斥和三者容斥问题,利用一些公式以及文氏图能够轻松地解决。今天我们就把这个题型深入挖掘探讨。容斥问题也会涉及到求极值的问题,接下来我们就以题目为例讲解下容斥中求极值问题怎么处理。
例题1、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少人?
A.165 B.203 C.267 D.199
【答案】C。读完题目我们就能判断出考察容斥问题中的二者容斥问题,但是有涉及到求极值问题。解极值问题我们可以通过逆向思维来求解,题目要求两种课程都选的至少,即求没选课程的人数最多。
通过这个表格我们可以得出要想不选课程的人数最多,即未选数学的141人和未选文学的92人不重复,因此不选课程的人数最多为141+92,因此题目所求的两种都选的最少=500-(141+92)=267人,故选C。
例题2、阅览室有100本杂志。小赵借阅过其中75本,小王借阅过70本,小刘借阅过60本,则三人共同借阅过的杂志最少有()本。
A.5 B.10 C.15 D.30
【答案】A。读完题目我们也可以判断出事考察三者容斥中的极值问题,那么我们也可以利用逆向思维来求解,
所以我们也能知道未借阅的杂志最多=25+30+40,那么题目所求=100-(25+30+40)=5,因此选A。
通过这2道例题的讲解我们了解到容斥问题的极值问题其实也可以很简单,求N部分都包含的至少=(A+B+C+D+...+N)-(N-1)×I,后期我们碰到这样的问题直接带入公式求解就可以啦。
例题3、有135人参加某单位的招聘,31人有英语证书和普通话证书,37人有英语证书和计算机证书,16人有普通话证书和计算机证书,其中一部分人有三种证书,而一部分人则只有一种证书。该单位要求必须至少有两种上述证书的应聘者才有资格参加面试。问至少有多少人不能参加面试?
A.50 B.51 C.52 D.53
【答案】D。读完题目我们也可以确定是在考察三者容...