出国留学网专题频道2021考研数学高数基础知识点栏目,提供与2021考研数学高数基础知识点相关的所有资讯,希望我们所做的能让您感到满意!

2021考研数学高数基础知识点:元函数微分法及其应用

考研数学高数基础知识点 元函数微分法及其应用 2021考研数学高数基础知识点

  时间一天天的过去,为了做好备考复习,下面由出国留学网小编为你精心准备了“2021考研数学高数基础知识点:元函数微分法及其应用”,持续关注本站将可以持续获取更多的考试资讯!

  2021考研数学高数基础知识点:元函数微分法及其应用

  1、多元函数存在的条件存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数接近某一确定值,我们还不能由此断定函数存在。反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的不存在。例如函数:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠0

  2、多元函数的连续性定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。

  性质(最 大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。

  性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。

  3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。

  4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导。

  5、多元函数可微的充分条件定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。

  6.多元函数极值存在的必要、充分条件定理(必要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。

  定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B2>0时具有极值,且当A0时有极小值;(2)AC-B2

  7、多元函数极值存在的解法(1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。

  (2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C.(3)定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。

  注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内。

  推荐阅读:

与2021考研数学高数基础知识点相关的考研数学

2021考研数学高数基础知识点:分段函数

考研数学高数基础知识点 2021考研数学高数基础知识点 分段函数

  备考复习的时间越来越少,为了做好备考复习,下面由出国留学网小编为你精心准备了“2021考研数学高数基础知识点:分段函数”,持续关注本站将可以持续获取更多的考试资讯!

  2021考研数学高数基础知识点:分段函数

  分段函数:

  1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的;

  分段函数是一个函数,定义域、值域都是各段的并集。

  2、绝对值函数去掉绝对符号后就是分段函数。

  3、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。

  4、分段函数的处理方法:分段函数分段研究。

  抽象函数:我们把没有给出具体解析式的函数称为抽象函数;

  一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。

  推荐阅读:

  2021考研数学高数知识难点解析

  2021考研数学概率论基础知识点:多维随机变量及分布

  2021考研数学概率论备考知识点

  

与2021考研数学高数基础知识点相关的考研数学

推荐更多