出国留学网经济师栏目精心整理推荐“2017中级经济师经济基础考点:数据特征的测度”一文,希望对广大读者有所帮助。想要了解更多资讯,请继续关注本网。
第二十二章 数据特征的测度
第一节、集中趋势的测度
集中趋势是指一组数据向某一中心值靠拢的倾向,测度集中趋势也就是寻找数据一般水平的代表值或中心值。集中趋势的测度,主要包括:
位置平均数----众数、中位数等
数值平均数----算术平均数和几何平均数等
(一)众数是一组数据中出现频数最多的那个数值,用M0表示。用众数反映集中趋势,非常直观,不仅适用于品质数据,也适用于数值型数据。众数是一个位置代表值,不受极端值的影响,抗干扰性强。
(二)中位数把一组数据按从小到大的顺序进行排列,位置居中的数值叫做中位数,用Me表示。
中位数计算:
3、计算和运用算术平均数注意事项:1)算术平均数同时受到两个因素的影响:各组数值的大小、各组分布频数的多少。频数在算术平均数中起着权衡轻重的作用。2)算术平均数易受极端值的影响。
(四)几何平均数是n个观察值连乘积的n次方根就是几何平均数。
(三)离散系数(标准差系数)
1、极差、标准差、方差都是反映数据分散程度的绝对值,其数值大小受到变量值水平高低和计量单位的影响。
2、为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。
离散系数通常是就标准差来计算的,因此也称标准差系数。它是一组数据的标准差与其相应的算术平均数之比,是测度数据离散程度的相对指标,用 表示。
离散系数主要是用于比较对不同组别数据的离散程度。离散系数大的说明数据的离散程度也就大,离散系数小的说明数据的离散程度也就小。
...