(18)(本小题共13分)
已知函数f(x)=x2+xsin x+cos x.
(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值。
(Ⅱ)若曲线y=f(x)与直线y=b 有两个不同的交点,求b的取值范围。
(19)(本小题共14分)
直线y=kx+m(m≠0)与椭圆W: +y2相交与A,C两点,O为坐标原电。
(Ⅰ)当点B的左边为(0,1),且四边形OABC为菱形时,求AC的长;
(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形。
(20)(本小题共13分)
给定数列a1,a2,…,an。对i-1,2,…n-l,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,…,an的最小值记为Bi,di=ni-Bi.
(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值.
(Ⅱ)设a1,a2,…,an(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…dn-1是等比数列。
(Ⅲ)设d1,d2,…dn-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,an-1是等差数列。
北京高考语文试题 | 北京高考数学试题 | 北京高考英语试题 | 北京高考理综试题 | 北京高考文综试题 |
北京高考语文答案 | 北京高考数学答案 | 北京高考英语答案 | 北京高考理综答案 | 北京高考文综答案 |