日本东京工业大学基本概况

  日本的东京工业大学是日本东京建立的首个国立大学,是日本顶尖的理工类的院校,你是否有申请该校的打算呢?那么跟着出国留学网一起来了解下日本东京工业大学基本概况吧,欢迎阅读。

  一、关于东京工业大学

  Tokyo university of Technology (Tokyo Institute of Technology), hereinafter referred to as DongGong big (Tokyo Tech), is a school-based area east of Kyoto black area, mainly engineering and natural science research of Japan's top, and the world first-class university of science Technology.University of Tokyo University of technology is the super international program (Top Global University Project) class A Top school, one of the eight University department of labor union and Japan, RU11 academic communion service and important member of the association of research universities and other academic organization in east Asia.The university of Tokyo has three academic departments and six research institutes, and more than 150 schools, such as the institute of resource chemistry and the institute of precision engineering, are also involved in the education research facilities.There are about 5,000 undergraduates, about 5,000 masters and doctoral students, about 10,000 students, and about 1,200 international students from all over the world.About 1, 200 teachers and 600 staff came to the school for education and research.As a research university, the university of Tokyo has a reputation for academic research, research results and education teaching in many aspects, not only in Japan but also in the world.

  东京工业大学(Tokyo Institute of Technology),简称东工业大((Tokyo Tech),位于京都目黑区东校本区,是一所主要以工程技术类和日本顶尖的自然科学研究类并行的大学,东京工业大学是世界一流的科技大学。东京工业大学是超级国际计划(全球顶级大学项目)一流的学校之一,是工会和日本八大学部之一,RU11学术交流服务和研究的大学和东亚洲的其他学术组织协会重要成员。东京大学有三个学术部门和六个研究所,150多所公共的教育研究的设施,其中包括资源化学研究所、精密工程研究所,教育科研设施等等。大学内大约有5000名本科生,5000硕士和博士研究生,总结大概为10000名学生,约1200的国际学生来自所有世界各地。大约1, 200名教师和600名工作人员都获得了良好的学术声誉和研究成果。

  二、历史沿革

  Tokyo university of Technology (と う き ょ う こ う ぎ ょ う だ い が く, Tokyo Institute of Technology) is a national university in Tokyo, Japan, the school location in Kyoto okayama eye black area.Founded in 1929, the university is referred to as "donggong da", or "Tokyo Tech".Its predecessor was , a Tokyo staff school founded in 1881。There are three campuses, which are located in the main campus of daokokayshan campus in the great okanshan district of dongkyoki district.The two other campuses are located at the chiura campus in the port area of Tokyo, and the bell-hanging campus in the green district of yokohama.In the post-war reconstruction in the 1950 s, Japan's economic growth in the 1960 s, from an era of rapid economic development to the bubble economy appears in the 1980 s, the school constantly for Japan cultivate excellent engineers, researchers, business people, etc.Since April 2004, the university has become a member of the national university of Japan, according to the new education regulation applicable to all state universities.

  1.概述

  东京工业大学(とうきょうこうぎょうだいがく,东京工业大学)在东京,是一所日本国立大学,京都冈山黑眼圈地区学校定位。成立于1929,大学被称为“东大”,或“东京工业”。它的前身是东京职工学校,东京职工学校成立于1881。有三个校区,分别位于大冈山校园主校区在大冈山大冈山区。其他两校区位于东京港区的田町校园与铃悬台校区在横滨的绿区。在战后重建在1950年代,在1960年代日本的经济增长,从经济快速发展的时代,经济泡沫出现在1980年代,学校不断为日本培养出优秀的工程师、研究人员、业务人员等。自2004年4月以来,大学已成为国家大学的一员员,根据新规定适用于所有国家的大学教育。

  chronology

  In May 1881, the Tokyo staff school was established.

  In May 1901, the name was renamed Tokyo higher industrial school.

  In April 1929, it was renamed Tokyo university of technology.

  Set up eight disciplines of dyestuff chemistry, textiles, ceramics, applied chemistry, electrical chemistry, mechanical engineering, electrical engineering, and architecture.Set up mathematics, physics, physical chemistry, analytical chemistry 4 classrooms.

  In May 1949, the state school setting law was published, setting up the national Tokyo university of technology.

  In April 1953, the institute of technology of the college of science and technology was set up to set up seven majors in applied physics, chemistry and chemical engineering, mechanical engineering, electrical engineering, metal engineering, textile engineering and architecture.

  In July 1955, the company renamed department of science, mathematics, physics, chemistry, chemical engineering, mechanical engineering, electrical engineering, project engineering, construction, construction engineering and management technology of 10 disciplines.

  In April 1960, the department of science and technology set up the mathematical sciences, physical discipline, discipline, fiber engineering discipline, chemical engineering discipline, chemical engineering, industrial disciplines, mechanical engineering, engineering, electrical engineering, electronic engineering disciplines and building 14 disciplines.

  In April 1962, the department of science and technology set up the macromolecule engineering division and applied the electrification discipline and the production machinery engineering division.

  In April 1964, the department of science and technology set up the soil woodworking discipline.

  Institute of science and technology of the college of science and technology, majored in engineering, electronics, engineering and management.

  In June 1967, the department of science and technology was opened to the department of science and engineering.

  Science has successively set up the physical, material, chemical engineering program 4 disciplines, mechanics department three disciplines, electrical electronics 2 subjects, and soil carpenter discipline, social work discipline, information science, planet earth science, after our company set up information engineering disciplines.

  In June 1990, the department of life science and technology was set up, and the department of life sciences, biology, biology, engineering, and biology were transferred

  In April 1994, the institute set up the research division of information science.

  In April 1996, the university established the social science research division.

  In April 2004, the national university of Tokyo was established as a legal person of the university of Tokyo.

  In April 2005, the college set up innovation management research division.

  In April 2016, education reform was implemented to unify the school and college, and reorganize the college

  2.年表

  1881年5月,东京职员学校成立。

  1901年5月,更名为东京高级工业学校。

  1929年4月,更名为东京工业大学。

  开设染料化学、纺织、陶瓷、应用化学、电气化学、机械工程、电气工程、建筑学八门学科,开设数学、物理、物理化学、分析化学4个专业。

  1949年5月,颁布了《国家学校设置法》,成立了国立东京技术大学。

  1953年4月,科学技术学院成立了应用物理、化学化工、机械工程、电气工程、金属工程、纺织工程和建筑七大专业。

  1955年7月,公司更名为科学、数学、物理、化学、化工、机械工程、电气工程、工程工程、建筑、建筑工程和管理技术10个学科。

  1960年4月,在科技部设立了数学科学,物理学科,学科、纤维工程学科、化学工程学科、化学工程、工业工程、机械工程学科、电气工程、电子工程学科、建筑学科的14。

  1962年4月,科技部成立了高分子工程司,并应用了电气化学科和生产机械工程部。

  1964年4月,科技部成立了土壤木工学科。

  理工学院理工学院,工程、电子、工程、管理专业。

  1967年6月,科技部向理工科开放。

  科学已经先后建立了物理、材料、化学工程4个学科,力学系三学科、电气电子2个学科,土木工学科,社会工作专业,信息科学,地球科学,在我们公司成立信息工程学科。

  1990年6月,生命科学系成立,生命科学系、生物系、生物学系、工程系和生物系被调校。

  1994年4月,研究所成立了信息科学研究司。

  1996年4月,该大学成立了社会科学研究司。

  2004年4月,国立东京大学成立为东京大学法人。

  2005年4月,学院成立了创新管理研究部。

  2016年4月,实施了统一学校和学院的教育改革,改组了学院。

  三、学术优势

  What kind of future will we create? What is the societal impact of the path we choose? Following the extensive reforms that took effect in April 2016, members of the Tokyo Tech community held workshops to reflect on these questions and formulate the "Tokyo Tech 2030" statement. Assured by our unfading commitment to teaching, learning, and research, Tokyo Tech confidently moves towards future challenges with strong intentions.Four workshops were held between fall 2016 and early spring 2017 to brainstorm Tokyo Tech’s unique strengths and societal impact. A total of 123 participants of all ages, including students, faculty, staff, and executive management, held small group discussions facilitated by Institute for Liberal Arts Professor Tamio Nakano. The creative dialogue resulted in a shared vision of the present and future of Tokyo Tech, which was condensed into the "Tokyo Tech 2030" statement — consisting of spirit and action — while taking into account external perspectives.

  Pursue

  Tokyo Tech knowledge is born from our creative vanguard and individual diversity. High aspirations and integrity are at the core of our vision. We value divergence in the pursuit of discovery and research excellence in fundamental and applied fields. The student-centered Tokyo Tech model prioritizes proactive learning and aims to develop professionals active on the world stage.Transcending conventional borders, Tokyo Tech’s teaching and research in new and interdisciplinary fields never cease to progress. We acknowledge and engage the expertise of each individual, and when united form a fountain of perpetual knowledge. Tokyo Tech’s open environment, together with increased international and public engagement, will bring about a new learning and research hub ahead of its time.To benefit people’s lives through novel ideas, Tokyo Tech must transfer the various forms of knowledge it creates. Increased joint research with businesses, science and technology consulting, entrepreneurship training, and startup support and development will preserve and promote the "creation of new industry," the unfading commitment of the Institute.

  1.概述

  我们将创造什么样的未来?我们选择的道路的社会影响是什么?在2016年4月生效的大规模改革之后,东京工业社区的成员举办了研讨会,以反映这些问题,并制定了“东京工业2030”的声明。在我们对教学、学习和研究的坚定承诺的保证下,东京工业集团自信地走向未来的挑战。在2016年秋季至2017年春季之间,我们一共举办了四次研讨会,以对东京工业的独特优势和社会影响进行头脑风暴。涵盖所有年龄的123名参与者,包括学生、教师、员工和执行管理人员,举行了由自由艺术教授Tamio Nakano主持的小组讨论。这种创造性的对话产生了对东京工业的当前和未来的共同愿景,并将其浓缩为“东京工业2030”的声明——以全面的视角来探索精神和行动。

  东京的科技知识来源于我们的创新先锋和个人多样性。高抱负和正直是我们愿景的核心。我们重视在基础和应用领域寻求发现和研究卓越的差异。以学生为中心的东京工业模式,优先考虑主动学习,并致力于培养活跃在世界舞台上的专业人士。在超越传统边界的同时,东京工业在新的和跨学科领域的教学和研究从未停止前进。我们承认并参与每一个人的专业知识,当联合形成一个永久知识的源泉。东京工业的开放环境,加上国际和公众参与度的提高,将会带来一个新的学习和研究中心。为了使人们的生活受益于新奇的想法,东京工业必须转移它所创造的各种形式的知识。加强与企业、科技咨询、创业培训、创业支持与发展的联合研究,将维护和促进“新产业的创建”,这是研究所的不褪色承诺。

  2.特色研究项目

  Tweaking thermoelectric voltage across atomic-scale gold junction by mechanical forceScientists at Tokyo Institute of Technology (Tokyo Tech) achieved precise and fully reversible switching of the polarity of voltage produced by the thermoelectric effect across a gold junction with an atomic-scale contact. The control of thermoelectric voltage was achieved by mechanically elongating the contact. This technology is expected to find applications in thermopower generation, measurement techniques in materials science, and solid-state electronic devices.A voltage difference is created across a junction of two wires held at different temperatures. This phenomenon, called thermoelectric effect, has been widely studied and used in various applications such as thermoelectric power generators, thermoelectric refrigerators, and temperature measurement. When the cross section of the junction contact is reduced to a few atoms, quantum-mechanical effects or, specifically, quantum interferences among electrons affect the transport of electrons across the junction. These interferences are strongly dependent on the structure, including minute defects, of the atomic-scale contact and surrounding material, which determine electrical properties such as conductance and thermoelectric voltage. So far, quantum interference effect in atomic-scale metal contacts has not found much application, because of the difficulty in precisely controlling atomic structures.

  通过机械力在原子尺度的黄金结上调整热电动势

  东京理工学院(东京理工大学)的科学家们,在一个与原子尺度接触的金接点上,实现了由热电效应产生的电压极性的精确而完全可逆的转换。热电动势的控制是通过机械地拉伸接触来实现的。该技术有望在热发电、材料科学和固态电子设备等领域找到应用。电压差是在不同温度下的两根导线的交叉处产生的。这种被称为热电效应的现象已经被广泛地应用于各种应用场合,如热电发电机、热电冰箱和温度测量等。当交接点的横截面减少到几个原子时,量子力学效应,或者,特别是在电子之间的量子干涉,会影响到在交叉处的电子的传输。这些干扰强烈地依赖于结构,包括微小的缺陷,原子尺度的接触和周围的材料,这些物质决定了电导和热电电压等电学性质。迄今为止,原子级金属接触的量子干涉效应因为在精确控制原子结构方面存在困难并没有得到多少应用。

  High-speed switching for ultrafast electromechanical switches and sensors

  Scientists at Tokyo Tech, Nagoya University, Japan Synchrotron Radiation Research Institute (JASRI), National Institute for Materials Science (NIMS) and University of New South Wales have observed high-speed switching in Pb(Zr0.4Ti0.6)O3 thin films under applied rectangular electric field pulses. Unlike the slow ferroelastic domain switching expected for ceramics, high-speed sub-microsecond ferroelastic domain switching and simultaneous lattice deformation are directly observed for the Pb(Zr0.4Ti0.6)O3 thin films. This exciting finding paves the way for high-frequency ultrafast electromechanical switches and sensors.Piezo micro electro mechanical systems (piezoMEMS) are miniaturized devices exhibiting piezoelectricity, i.e., the appearance of an electric charge under applied mechanical stress. These devices have many diverse applications in energy harvesters, micropumps, sensors, inkjet printer heads, switches, and so on. In permanently polarized (ferroelectric) materials, ferroelastic domain switching affects the piezoelectric properties significantly, and this behavior can be exploited for piezoMEMS applications.Pb(Zr1-xTix)O3 (PZT) thin films have excellent piezoelectric and ferroelectric properties; therefore, they are potential candidates for MEMS applications. Under an applied electric field, both lattice elongation and 90° ferroelastic domain switching are observed in tetragonal PZT thin films. In particular, non-180° ferroelastic domain switching has important implications for the future realization of high-performance piezoMEMS devices.

  超高频机电开关和传感器的高速开关

  东京理工大学、名古屋大学、日本同步辐射研究所(JASRI)、国家材料科学研究所(NIMS)和新南威尔士大学的科学家们已经观测到在应用矩形电场脉冲下的Pb(Zr0.0.4.Ti0.1.6)O3薄膜的高速切换。与陶瓷的慢铁弹性领域交换不同,在Pb(Zr0.0.4 Ti0.6)O3薄膜上直接观察到高速亚微秒铁弹性域切换和同步晶格变形。这一令人兴奋的发现为高频的超高频机电开关和传感器铺平了道路。压电微电子机械系统(压电)是微型化的器件,显示压电现象。在机械应力的作用下,电荷的出现。这些设备在能源收获机、微泵、传感器、喷墨打印机头、开关等方面有许多不同的应用。在永久极化(铁电)材料中,铁弹性领域开关对压电性能的影响很大,这一行为可被用于压电式的应用。Pb(z1-xtix)O3(PZT)薄膜具有优良的压电和铁电性能;因此,它们是MEMS应用程序的潜在候选对象。在一个应用电场下,在正方PZT薄膜中观察到晶格伸长和90铁弹性域切换。特别是,非180铁弹性域交换对高性能压电器件的未来实现具有重要意义。

  Biophysics explains how immune cells kill bacteria

  A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. These biophysical descriptions are expected to clarify the TCR microcluster, an essential assembly for a T cell to initiate its attack on a pathogen.To kill a pathogen invading the human body, T cells, or lymphocytes, bind to it through T cell receptors (TCR). One of the first events this binding initiates is the formation of a microcluster that includes tens or hundreds of TCR molecules. These microclusters are deemed essential to initiate and sustain the immune signal. A new analysis technique by scientists at School of Life Sciences at Tokyo Institute of Technology provides a quantitative description of the molecules that form these microclusters. The study can be read in Scientific Reports.

  Imaging technologies have visualized the generation and dynamics of microclusters, but there is no quantitative data. We developed ‘moving subtrajectory (MST) analysis' using single-molecule tracking to quantitatively study the dynamics and kinetics of CD3 and CD45 around the microcluster," explains Prof. Makio Tokunaga, whose lab designed the new method.TCR function by forming a complex (TCR/CD3) with CD3. CD45, on the other hand, is not part of the complex, but is believed to regulate the formation of the cluster.Single molecule imaging was used to trace the movement of CD3 and CD45 around the microclusters. Yuma Ito, an Assistant Professor in the lab, shows that MST analysis is superior to standard analysis methods by revealing details on the temporal and spatial variation of the movement."Standard methods analyze the mean square displacement of the whole trajectory. MST divides the trajectory into subtrajectories and calculates the mean square displacement of each subtrajectory. Using MST, we could analyze movement inside, outside and at the boundary of the TCR microclusters," he explains.

  生物物理学解释了免疫细胞如何杀死细菌

  一项新的数据分析技术,由东京理工学院的研究人员设计的移动子轨迹分析,定义了免疫反应中关键分子的动力学和动力学。这些生物物理描述有望澄清TCR微簇,这是T细胞发起攻击病原体的基本程序。为了杀死入侵人体的病原体,T细胞或淋巴细胞通过T细胞受体(TCR)与之结合。这个绑定启动的第一个事件是形成一个包含数十或数百个TCR分子的微集群。这些微簇被认为是启动和维持免疫信号的必要条件。东京理工学院生命科学学院的一项新的分析技术为形成这些微簇的分子提供了定量的描述。这项研究可以在科学报告中阅读。

  “成像技术已经可视化了微簇的生成和动态,但没有定量数据。我们开发了“移动子轨迹(MST)分析”,利用单分子跟踪,定量研究了CD3和CD45在微簇周围的动力学和动力学,”Makio Tokunaga教授解释道,他的实验室设计了这个新方法。TCR的功能是通过CD3建立一个复杂的(TCR/CD3)。另一方面,CD45并不是复杂的一部分,但它被认为是调节集群的形成。利用单分子成像技术追踪CD3和CD45在微簇周围的运动。Yuma Ito是实验室的助理教授,他指出,MST分析比标准分析方法更优秀,揭示了运动的时间和空间变化的细节。标准方法分析了整个轨迹的均方位移。MST将轨迹划分为子轨迹,并计算每个子轨迹的平均平方位移。通过使用MST,我们可以分析在TCR微簇的内部、外部和边界的运动。”他解释道。

  Tokyo Tech and Kawasaki City, combining forces in R&D on Computational Drug Discovery for Middle Molecules at KING SKYFRONT

  On July 31, Tokyo Institute of Technology (Tokyo Tech) and Kawasaki City announced that they are combining forces to conduct R&D, construct an infrastructure, and implement a business promotion program for the "Program to Industrialize an Innovative Middle Molecule Drug Discovery Flow through Fusion of Computational Drug Design and Chemical Synthesis Technology". This highly unique program incorporates computational drug design methods into the field of drug discovery for middle molecules. The program fuses computational drug design that utilizes molecular simulation and machine learning by the Super Computer TSUBAME of Tokyo Tech and unique chemical synthesis technology such as artificial peptides and artificial nucleic acids. Through industry-academia-government partnerships including corporations in Kawasaki City, the program seeks to form an innovation ecosystem that bridges basic/fundamental research and the drug discovery business, thus dramatically improving the efficiency of developing middle molecule drugs.

  In order to implement this research project, the Middle Molecule IT-based Drug Discovery Laboratory (MIDL) will be opened this fiscal year in Tonomachi KING SKYFRONT, an international strategic zone located in Kawasaki City. MIDL will possess enhanced research functions for middle molecules and will be the world's first dedicated facility in this field with state-of-the-art computational approaches. Tokyo Tech will also open a Middle Molecule IT-based Drug Discovery Laboratory (MIDL) core facility inside the university campus and establish a system in which faculty cooperate across research fields. This research program was selected for support by the FY2017 Regional Innovation and Ecosystem Formation Program of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). The MEXT program seeks to utilize regional technology seeds and to create a successful model of industrialization with significant social impact based on global expansion from that region. During the 5-year period until March 2022, the research program will receive annual grants-in-aid of 155 million JPY. The grants will be used to conduct R&D, to construct an infrastructure for creating a regional industrial ecosystem, and to implement a business promotion program.

  东京工业公司和川崎市,联合研发力量在天空前线的中间分子的计算药物发现

  7月31日东京理工学院(日本技术)和川崎市宣布他们是结合部队进行研发,建立一个基础设施,并实现业务推广计划”项目工业化创新型中间分子药物发现流过的融合计算药物设计和化学合成技术”。这个高度独特的程序将计算药物设计方法融入到中分子药物发现的领域中。该程序融合了利用分子模拟和机器学习的计算药物设计,利用了东京工业的超级计算机TSUBAME和人工多肽和人工核酸等独特的化学合成技术。通过与川崎市的企业合作,建立了一个创新的生态系统,建立了基础研究和药物发现业务的桥梁,从而极大地提高了开发中分子药物的效率。为了实施这个研究项目,中分子药物研发实验室(MIDL)将于本财年在位于川崎市的国际战略区域“通omachi KING SKYFRONT”开幕。MIDL将为中分子提供增强的研究功能,并将成为世界上第一个在这一领域拥有先进计算方法的专用设备。东京工业公司还将在大学校园内开设一个中间分子药物研发实验室(MIDL)的核心设施,并建立一个系统,在这个系统中,教师可以在研究领域进行合作。这个研究项目是由日本教育、文化、体育、科技(MEXT)的2017财年区域创新和生态系统形成计划所选择的。MEXT计划寻求利用区域技术种子,并建立一个成功的工业化模式,并基于该地区的全球扩张而产生重大的社会影响。在截至2022年3月的5年期间,该研究项目将获得每年1.55亿日元的资助。赠款将用于开展研发,为创建一个区域工业生态系统建立基础设施,并实施一个商业促进计划。

  One-Nanometer Trimetallic Alloy Particles Created

  A researcher group of Tokyo Institute of Technology succeeded in developing precisely controlled alloy nanoparticles "multimetallic nanoclusters (MNCs)" made of three metals: copper, platinum, and gold. They also discovered that MNCs show catalytic activity that is 24 times greater than commercially available carbon-supported platinum catalysts in the oxidization of hydrocarbons using oxygen in the air.The research group led by Kimihisa Yamamoto of Tokyo institute of Technology developed a method of synthesizing microscopic alloy nanoparticles using branched molecules "dendrimers" they themselves had developed in Yamamoto Atom Further, they evaluated the activity of this alloy nanoparticle as an oxidization catalyst for hydrocarbons under ordinary pressures when using oxygen in the air as the oxidizing agent, and found that its activity was 24 times greater than that of commercially available catalysts for oxidization of organic compounds. They also found that, by adding a catalytic amount of organic hydroperoxide, this catalyst promotes the oxidization of hydrocarbon into aldehydes and ketones under ordinary temperatures and pressures. Further, by comparing the changes in activity due to alloy catalysts of different metallic compositions and examining the composition and other characteristics of the intermediates, ketones and organic hydroperoxides, the group was able to observe the process of reaction promotion due to the alloying of the catalyst.

  一纳米三金属合金粒子

  东京理工学院的一个研究小组成功地开发了精确控制的合金纳米粒子“多金属纳米簇(MNCs)”“由三种金属制成:铜、铂和黄金。他们还发现,跨国公司的催化活性比在空气中使用氧的碳氢化合物的氧化过程中获得的碳支持的铂催化剂的催化活性要高24倍。领导的研究小组Kimihisa山本东京理工学院开发的方法合成微合金纳米粒子使用支化分子“树枝状分子”他们自己开发的山本原子混合Projectouter埃拉托程序,先进技术的探索性研究,研究资助计划支持的日本科学技术振兴机构(JST)。被称为树状分子的分子有一个固定的分支结构,只有一个明确的分子量,尽管它们被归类为大分子。研究小组为金属离子和复合物的形成提供了许多协调场所。通过使用具有这种协调位点的树枝作为纳米粒子的模板,该小组能够合成一种具有受控数量原子的纳米粒子。此外,他们还对这种合金纳米颗粒的活性进行了评价,认为它是一种氧化催化剂,在空气中使用氧气作为氧化剂,并发现它的活性是有机化合物氧化催化剂的24倍。他们还发现,通过增加有机双氧水的催化量,这种催化剂可以在常温和压力下促进碳氢化合物的氧化。此外,通过比较不同金属成分的合金催化剂活性的变化,并考察了中间体、酮和有机氢氧化合物的组成及其它特性,该组织能够观察催化剂的合金化过程中反应促进的过程。

  五、校园环境

  Ookayama CampusIs a 1-minute walk from Ookayama Station

  Suzukakedai CampusIs a 5-minute walk from Suzukakedai Station

  Tamachi CampusIs a 2-minute walk from Tamachi Station

  大冈山校区:东京都目黒区大冈山2-12-1, 邮编:152-8550(大冈山站徒步1分钟)

  铃悬台校区:神奈川县横浜市绿区长津田町 4259,邮编:226-8503 (铃悬台徒步5分钟)

  田町校区:东京都港区芝浦3-3-6,邮编:108-0023(田町站徒步2分钟)[25]

  1.大冈山校区

  Main Building

  The Main Building maintains its value as an example of modern architecture from the early Showa period. It has witnessed much of the history of Tokyo Tech and has become a symbol of Ookayama Campus. (Not open to the public)

  Institute Library:The Ookayama library is a must-see sight for its architectural beauty and value. The Library makes its collection available to outside researchers under certain conditions.

  Wood Decking in front of the Main Building:This wood decking is lined with cherry trees, where you can sit and enjoy the changing seasons, including magnificent cherry blossom in spring.

  Mount Fuji Viewing Slope:The overpass in front of the Healthcare Center was designated as one of 100 spots in Kanto prefecture where you can appreciate beautiful views of Mount Fuji. This is reflected in its name, Toukyou fujimi zaka (Tokyo Fuji-viewing slopeouter ).

  Museum and Centennial Hall building:The science, typical research in the field of technology, and commemorative educational items related to the history of Tokyo Institute of Technology are displayed in this building.

  Environmental Energy Innovation Building:The Environmental Energy Innovation (EEI) Building incorporates the latest energy technology making the building like no other in the world. Designed to confront global warming, the EEI Building is nearly self-sufficient at producing the electricity it consumes and has reduced its carbon dioxide emissions by more than 60%.

  Registered Tangible Cultural Properties:In July 2013, three buildings on the Tokyo Tech Ookayama Campus were granted the status of Registered Tangible Cultural Properties by Japan's Agency for Cultural Affairs.

  Collaboration Center for Design and Manufacturingouter:The Collaboration Center for Design and Manufacturing is where student clubs make and exhibit homemade speakers, race-winning human-powered aircraft and other creations, including those made in creativity education classes

  Open weekdays, 10:00-16:00

  主要建筑

  从早期的展览开始,主要的建筑作为现代建筑的典范保持着它的价值。它见证了东京工业的许多历史,已经成为了冈山校区的标志。(不向公众开放)

  研究所图书馆:山冈图书馆是其建筑美和价值的必看景观。在某些情况下,图书馆可以向外部研究人员提供它的收藏。

  主建筑前的甲板:这片木片上满是樱桃树,你可以坐在那里欣赏变幻的季节,包括春天盛开的樱花。

  富士山坡:医疗中心前面的天桥被指定为关东县的100个景点之一,你可以欣赏到富士山的美景。这反映在它的名字里,图克你藤原真子(东京富士)。

  博物馆和百年纪念馆:科学、技术领域的典型研究,以及与东京理工学院历史有关的纪念。

  环境能源创新建筑:环境能源创新(EEI)建筑结合了最新的能源技术,使建筑成为世界上独一无二的建筑。为了应对全球变暖,EEI大厦几乎可以自给自足,并将二氧化碳的排放量减少了60%以上。

  注册有形的文化属性:2013年7月,东京工业大学冈山校区的三栋建筑被日本文化厅授予了注册有形文化财产的地位。

  设计和Manufacturingouter的合作中心:是学生俱乐部制作和展示自制扬声器,种族取胜的人力飞行器和其他创造,包括那些在创意教育课程中制造的,工作日开放的时间:10:00-16:00

  2.铃悬台校区

  Exhibition SpaceouterResult:s of new research conducted at Tokyo Institute of Technology across the varied fields of earth sciences, biotechnology, material science, information science and mechanical engineering are displayed here.Coelacanth,An exhibition of the Coelacanth, known as a "living fossil", also sits in the Frontier Research Center. You are able to view resin-coated samples, replicas, eggs and other items not normally found in exhibitions of this type.Open weekdays, 12:00-17:00

  Peripatos Open Gallery:The Peripatos Open Gallery has two exhibition areas: an indoor display area for paintings and an outdoor area for sculptures. The latter area with its three-dimensional works of art was intentionally designed to catch the attention of students, staff and visitors as they stroll through the Suzukakedai Campus grounds encouraging both relaxation and inducing them to return to see future exhibitions.

  J2 Building:This building has a high resistance to earthquake activity. Inside the building you can see a wide range of technologies and mechanisms to strengthen high-rise buildings against earthquakes.

  Spaceouter展览:东京理工大学在地球科学、生物技术、材料科学、信息科学和机械工程等各个领域进行了新的研究。腔棘鱼,一种被称为“活化石”的腔刺的展览也坐落在前沿研究中心。你可以在这种类型的展览中看到树脂涂层的样品、复制品、鸡蛋和其他物品。工作日开放的时间:12:00-17:00

  Peripatos Open画廊:帕皮诺画廊的开放画廊有两个展区:一个是室内的绘画区域,一个是雕塑的室外区域。为了吸引学生、工作人员和游客的注意力,他们在苏木城的校园里散步,鼓励学生们放松,并引导他们回去看未来的展览,这是为了吸引学生、工作人员和游客的注意。

  J2建筑:这座建筑对地震活动有很高的抵抗力。在建筑物内部,你可以看到各种各样的技术和机制,以加强高层建筑抵御地震的能力。

  3.田町校区

  Tokyo Tech's Tamachi Campus is located in Minato City in the center of Tokyo, in the immediate vicinity of Tamachi Station. It is home to the Tokyo Tech High School of Science and Technology, the Graduate School of Innovation Management, the Career Advancement Professional School, and the Tokyo Tech Campus Innovation Center, which is also home to satellite offices of other national universities.

  东京工业大学的塔玛奇校区位于东京市中心的米纳托市,紧邻塔玛奇车站。它是东京工业大学科技学院、创新管理研究生院、职业发展专业学校和东京工业大学创新中心的所在地,也是其他国家大学的办公室所在地。

  六、著名校友(源自网络)

  政界

  菅直人: 第94任日本首相

  苫米地义三:第3任内阁官房长官

  小林英三:第28任厚生大臣

  齐藤铁夫:第11、12任环境大臣

  池上彻彦:文部科学省宇宙开发委员会委员长

  本保芳明:初代国土交通省观光厅长官

  曾小川久贵:原国土交通省都市·地域整备局下水道部长

  大村平:第18任航空幕僚长

  猪濑直树:原东京都知事

  石见利胜:兵库县姬路市市长

  商界·科技

  桥本卯太郎:日本啤酒公司原董事,日本首相桥本龙太郎的祖父

  桥本增治郎:日产汽车的前身快进社创办者

  岩田聪: 任天堂原社长

  土光敏夫:东芝原董事长,日本经济团体联合会原主席

  山下彻:NTT DATA社长

  远藤信博:NEC社长

  池田敏雄:富士通原专务,富士通计算机之父

  藤沼彰久:野村综合研究所社长

  庄山悦彦:日立制作所原社长

  铃木登夫:日立物流社长

  铃木正一郎:王子制纸原社长桥本元一:日本放送协会(NHK)原会长

  河津秋敏:知名游戏开发者,代表作包括《最终幻想》系列

  大前研一:著名管理学家,经济评论家,世界商业及企业策略领导者之一,以其开发的3C模型而知名

  土井利忠:机器人科学家,世界首个双足跑的机器人Qrio与Sony机器狗AIBO的开发者

  广濑茂男:仿生机器人领域的权威科学家

  教育·研究

  白川英树:化学家,2000年诺贝尔化学奖得主

  细野秀雄:材料科学家,日本学士院奖东工大博士白川英树获得2000年诺贝尔化学奖

  茅诚司:东京大学原校长,日本学术会议原会长

  川上正光:东京工业大学原校长,长冈技术科学大学原校长

  田中寿一:物理学家,名城大学创办者

  清家正:东京都立大学(现首都大学东京)工学部原部长

  古滨庄一:武藏工业大学(现东京都市大学)原校长

  仓田道夫:京都大学名誉教授·化学研究所所长

  陈建功:中国著名数学家,先后担任浙江大学、复旦大学教授。

  陈群:华东师范大学校长

  建筑

  筱原一男:日本著名的建筑实践家和建筑教育家,日本一批最有影响力的建筑师,例如伊东丰雄,长谷川逸子,都曾师从筱原一男

  刘敦桢:中国现代建筑家,中国科学院院士

  清家清:建筑师,1981年日本建筑学会会长,日本建筑学会奖获得者,其子为庆应义塾大学校长清家笃

  坂本一成:建筑师,日本建筑学会奖获得者

  仙田满:建筑师,2001-2003年日本建筑学会会长,日本建筑学会奖获得者

  平井圣:建筑师,昭和女子大学原校长,日本建筑学会奖获得者

  白泽宏规:建筑师,东京造形大学原校长

  藤冈通夫:建筑史学家,日本工业大学原校长

  演艺

  铃木康博:歌手

  滨田庄司:日本国宝级陶艺家

  以上内容由出国留学网m.liuxue86.com独家翻译,版权归出国留学网所有,未经出国留学网授权许可,任何公司任何人不得转载,违者必追究法律责任!

  日本留学费用准备细则

  日本留学本科申请详细流程

  日本留学各阶段学费最全解析

  



分享

热门关注

留学英国选择哪个大学好 英国临海大学有哪些

热门临海院校

留学俄罗斯英语授课课程有哪些

俄罗斯英语授课课程

高中日本出国留学需要什么条件2021

留学日本高中

新加坡私立大学有哪些 留学新加坡私立大学介绍

新加坡私立大学介绍

新加坡大学有哪些知名大学

新加坡知名大学推荐

东京工业大学好不好

东京工业大学留学优势

柏林工业大学申请条件

德国留学

慕尼黑工业大学怎么样?

德国留学

福井工业大学怎么样

福井工业大学

德累斯顿工业大学怎么样

德国留学

热门问答