美国德克萨斯大学奥斯汀分校基本概况

  美国的德克萨斯大学奥斯汀分校创立于1883年,是北美顶尖的研究型大学,也是德克萨斯州最顶尖的大学之一,跟着出国留学网一起来了解下美国德克萨斯大学奥斯汀分校基本概况吧,欢迎阅读。

  一、关于德克萨斯大学奥斯汀分校

  Like the state it calls home, The University of Texas at Austin is a bold, ambitious leader. Ranked among the biggest and best research universities in the country, UT Austin is home to more than 51,000 students and 3,000 teaching faculty. Together we are working to change the world through groundbreaking research and cutting-edge teaching and learning techniques. Here, tradition and innovation blend seamlessly to provide students with a robust collegiate experience. Amid the backdrop of Austin, Texas, a city recognized for its creative and entrepreneurial spirit, the university provides a place to explore countless opportunities for tomorrow’s artists, scientists, athletes, doctors, entrepreneurs and engineers.Whether you're a scholar of the sciences, humanities or arts, we offer dozens of top-ranked programs with a proven record of success. But you don't have to take our word for it: The university is one of the top 20 public universities according to U.S. News & World Report, with the No. 1 accounting, Latin American history and petroleum engineering graduate programs in the country — plus more than 15 undergraduate programs and more than 40 graduate programs ranked in the top 10 nationally. No matter where you look, it's clear that academic excellence is an essential part of the UT Austin experience.

  UT Austin is the flagship school of the University of Texas System, which includes nine academic universities and six health institutions statewide. As a public university, we take seriously our charge to serve the great state of Texas that supports us — and with billions of dollars in added state income every year, not to mention countless other benefits to local and statewide communities, The University of Texas at Austin provides an exceptional return on investment. An enduring symbol of the spirit of Texas, we drive economic and social progress, all while serving our city, state and nation as a leading center of knowledge and creativity.Our large student body, storied history, strong community and richness of tradition have given rise to a proud alumni base of more than 482,000, which includes industry leaders like Michael Dell and Rex Tillerson, entertainers like Oscar-winning actor Matthew McConaughey, Academy Award-winning actress Marcia Gay Harden and film director Robert Rodriguez, journalists like Bill Moyers and Walter Cronkite, and politicians like Sam Rayburn, James Baker and Kay Bailey Hutchison. In addition to providing great networking opportunities, our alumni connectedness ensures that you can find fellow Longhorns no matter where you go after graduation.

  德克萨斯大学奥斯汀分校的国家就像一个叫做家乡的国家,是一个勇敢而雄心勃勃的领导者。UT Austin是全国最大和最好的研究型大学之一,拥有超过51,000名学生和3,000名教学人员。我们一起努力通过开创性的研究和尖端的教学和技术来改变世界。在这里,传统与创新无缝融合,为学生提供强大的大学生体验。在德克萨斯州奥斯汀市的背景下,这个城市以其创造性和创业精神而闻名,该大学是一个为未来的艺术家、科学家、运动员、医生、企业家和工程师提供无数机会的地方。无论您是科学、人文、艺术学者,我们提供数十个排名最高的计划,并帮助您取得成功。根据美国新闻与世界报道,我们大学是排名前20位的公立大学之一, 拥有该国第一大会计,拉丁美洲历史和石油工程研究生课程,加上超过15个本科课程,40多个研究生课程排均在全国前十名。无论你在哪里,很显然,卓越的学位是UT Austin经验的重要组成部分。

  UT奥斯汀是德克萨斯大学系统的旗舰学校,其中包括全国9所学术大学和6所卫生机构。作为一所公立大学,我们认真对待我们的服务,为德克萨斯州的大国提供支持,每年都有数十亿美元的国家收入,更不用说向当地和全州社区提供无数的其他福利,德克萨斯大学奥斯汀提供卓越的投资回报。作为德克萨斯精神的持久象征,我们推动经济和社会进步,同时为我们的城市,国家和国家服务,成为知识和创造力的领先中心。我们的大学生,传统历史,强大的社区和丰富的传统已经引起了超过482,000名骄傲的校友基地,其中包括Michael Dell和Rex Tillerson等行业领袖,奥斯卡获奖演员Matthew McConaughey,奥斯卡颁奖典礼,获奖的女演员马西娅·盖·哈登和电影导演罗伯特·罗德里格斯,像比尔·莫耶斯和瓦尔特·克朗凯特这样的记者,以及像Sam Rayburn,James Baker和Kay Bailey Hutchison这样的政治家。除了提供良好的交流机会之外,我们的校友连系确保了无论毕业后你去哪里,都能找到长角牛(我们的吉祥物)。

  二、历史沿革

  In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state's higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a "university of the first class." Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, The University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.

  1839年,德克萨斯共和国议会下令,将一个场址放在一边以满足国家的高等教育需求。经过几十年的一系列拖延,国家立法机关在1876年重新启动了这个项目,呼吁建立“一流大学”。奥斯汀于1881年被选为新大学的遗址,并于1882年11月在原来的主楼开始施工。不到一年后,1883年9月15日,德克萨斯大学奥斯汀分校开设了一座建筑,八座教授,一位考官和221名学生,以及改变世界的使命。今天,UT奥斯汀是世界知名的高等教育,研究和公共服务机构,每年为18所顶尖大学和学校提供51000多名学生。

  三、教研优势

  The University of Texas at Austin is proud to be one of the world's leading research universities. Our students and faculty are encouraged to explore and discover in the arts, humanities and sciences — and across disciplinary boundaries. UT researchers work to fight and treat diseases, devise solutions to global problems, address critically important social issues and improve the human condition in myriad ways. Our world-class resources include extensive grant and funding opportunities, broad support networks dedicated to turning ideas into products and companies, and state-of-the-art labs, studios and facilities. We're proud to support our inspiring community of researchers — and are dedicated to sharing their work with the world.

  德克萨斯大学奥斯汀分校自豪地成为世界领先的研究型大学之一。我们鼓励学生和教师探索和发现艺术、人文科学和跨学科界限。UT研究人员致力于治疗疾病,制定解决全球问题的办法,解决重大的重大社会问题,以无数方式改善人身状况。我们的世界级资源包括广泛的资助和资金机会,广泛的支持网络,致力于将想法转化为产品和公司,以及最先进的实验室,工作室和设施。我们为支持我们鼓舞人心的研究人员而感到自豪,并致力于与世界分享他们的工作。

  he Nation’s Largest University Undergraduate Research Program

  In UT Austin’s College of Natural Sciences, students dive into scientific research right from the start. The pioneering Freshman Research Initiative (FRI) gives first-year students the opportunity to initiate and engage in real-world research experience with faculty and graduate students. Our companion Accelerated Research Initiative offers a parallel experience to upper division students.Our program has become a national model for science education, as students are more likely to stay in college, complete science and math degrees, and graduate better prepared to pursue advanced degrees or jobs in industry. n the Autonomous Robots research stream, freshmen program intelligent machines to interact on their own with visitors to the UT Austin campus.In the DIY Diagnostics research stream, first-year students develop take-home diagnostic tools and apps used to detect disease and measure environmental quality.In the Bugs in Bugs research stream, students study the gut bacteria of pollinators and other insects to better understand the impact of microbial bacteria on the health of crucial species, such as bees. In the Biofuels research stream, undergraduates contribute to a major National Science Foundation-funded project to examine whether plants like switchgrass can be used for energy in place of oil.

  国家最大的本科研究计划

  在奥斯汀自然科学院,学生从一开始就深入科学研究。开创性的大一新生研究计划(FRI)为第一年的学生提供了与教师和研究生进行现实研究经验的机会。我们的同伴加速研究计划为上学生提供了平行的体验。我们的课程已经成为科学教育的国家模式,因为学生更有可能留在大学,完成科学和数学学位,毕业生更好地准备追求高级学位或工业的工作。学生在科学,数学和技术方面探索未回答的问题。他们发现了新知识,并开发了像这样的专门程序的创新技术:在自主机器人研究流中,新生程序智能机器与UT Austin校园的游客自行互动。在DIY诊断研究流程中,第一年的学生开发了用于检测疾病和测量环境质量的入门诊断工具和应用程序。在Bugs研究流程中,学生研究传粉者和其他昆虫的肠道细菌,以更好地了解微生物细菌对蜜蜂等关键物种的健康的影响。在生物燃料研究流程中,本科生对国家科学基金会资助的一个重大项目进行了调查,以检查是否可以利用柳枝稷类植物替代能源。

  Core Facilities

  Table of Contents: Cockrell School of Engineering.College of Liberal Arts/College of Natural Sciences.College of Natural Sciences.Jackson School of Geosciences.College of Pharmacy.

  The University of Texas at Austin operates core facilities dedicated to providing the latest equipment and knowledge necessary to assist researchers. From routine, though essential, support services to advanced technical and consulting services, these cores facilitate and enhance the important research conducted at the university on a daily basis.Cockrell School of EngineeringFacility Name.

  Center for Aeromechanics Research.Flowfield Imaging Lab.Computational Fluid Physics LAB.Microelectronics Research Center.E-Beam Lithography (Microelectronics Research Center).Texas Materials Institute. Electron Microscopy.Polymer Characterization.X-ray Scattering. Surface Analysis.Center for Nano and Molecular Science and Technolog.Scanning Probe Microscopy. Nano Fabrication and Testing.Specialized Central Facilities.

  相关研究设施简介

  德克萨斯大学奥斯汀分校运作核心设施,致力于提供必要的最新设备和知识,以协助研究人员。这些核心从日常的,必不可少的支持服务到先进的技术和咨询服务,有助于和加强大学每天进行的重要研究。

  科科尔工程学院设备名称:航空力学研究中心、流场成像实验室、计算流体物理LAB、微电子研究中心、电子光刻(微电子研究中心)。

  德州材料研究所:电子显微镜、聚合物表征、X射线散射、表面分析。

  纳米和分子科学与技术中心:扫描探针显微镜、 纳米制造和测试、专门的中央设施。

  自然科学学院设备名称:影像研究中心。

  细胞与分子生物学研究所:ICMB核心研究设施、DNA测序、 蛋白质组学、 小鼠遗传工程、显微镜和成像设备、大分子晶体、 基因组测序和分析设施。

  化学系:电化学中心、质谱仪、 核磁共振、 X射线设备、费雪科学研究室、玻璃制品店、仪器设计和维修。

  德克萨斯大学药物与诊断研究所:自动化和高筛选、基因组测序和分析设施、大分子晶体学设备。

  杰克逊地球科学院设备名称:JSG稳定同位素实验室、经济地质局地质核心、电感耦合等离子体质谱实验室、Isoprobe感应耦合等离子体质谱仪、高压矿物物理实验室、地球科学微束分析设备、高分辨率X射线计算机断层扫描设备

  药学院设备名称:蛋白质组学设施、药物动力学研究所、Therapeutex临床前核心实验室、UTech。

  Periodic Table of Ecological Niches Could Aid in Predicting Effects of Climate Change

  AUSTIN, Texas — A group of ecologists has started creating a periodic table of ecological niches similar to chemistry’s periodic table. And just as chemists have used their periodic table as a point of reference to understand relationships among elements, the emerging table for ecologists shows relationships over time among animals, plants and their environments — acting as a critical resource for scientists seeking to understand how a warming climate may be spurring changes in species around the globe.The University of Texas at Austin’s Eric Pianka, lead author on a paper published online this week in The American Naturalist, joined four other researchers in producing the first parts of this new ordering framework for niches, the set of defining factors in a place that determine how its plants and animals live, reproduce and interact with one another and their surroundings.“Summarizing major ecological traits in such simple schemes will allow ecologists to predict how species might react to new environmental conditions and the invasive potential of species,” Pianka said. “It will inform us about how niches have evolved in the past and even how they will evolve in the future, all of which has direct bearing on impacts of climate change.”So many factors go into defining ecological niches that they are highly complex, and ecologists have never before succeeded in ordering them in a predictable way. Still, researchers have been intrigued by the idea since 1972, when evolutionary ecologist Robert MacArthur proposed ordering them in a way similar to chemistry’s periodic table. In that table, elements are ordered by a combination of their atomic number (protons), configuration of electrons and certain chemical properties.

  The periodic table capitalizes on this type of convergent evolution in lizards around the world and uses multidimensional analyses of more than 50 lizard-niche dimensions. Just three dimensions capture 62 percent of the total variation, an indication that lizard niches are tightly constrainedIn addition to the paper, the researchers have produced a website that allows ecologists to explore its findings. Because people perceive in only three dimensions, visualizing and understanding complex niches in more dimensions is difficult, so to make it easier to visualize their results on the website, Pianka and his colleagues produced rotating 3-dimensional graphics. These allow users to explore constraints and tradeoffs in the evolution of lizard niches and reveal the manner in which species overlap or separate based on habitat, body size, foraging mode, diet, life history, metabolism, defensive tactics and/or time and place of activity.The research was a collaboration among Pianka and Vitt as well as Nicolás Pelegrin of the University of Cordoba, Argentina, and Daniel B. Fitzgerald and Kirk O. Winemiller at Texas A&M University. It was funded by the National Geographic Society and the National Science Foundation, among others.

  研究成果简介

  研究成果一:生态位的周期表可以预测气候变化的影响

  得克萨斯州奥斯汀 - 一群生态学家已经开始创建类似化学周期表的生态位的周期表。正如化学家将周期表用作了解元素之间的关系的参考点,生态学家的新兴表格显示了动物,植物及其环境之间的时间关系 - 作为寻求理解温暖的科学家的关键资源气候可能会刺激全球物种的变化。德克萨斯大学奥斯汀分校的Eric Pianka是本周在美国自然学家网络上发表的一篇论文的主要作者,与其他四位研究人员一起,共同研究了这一新的排序框架的第一部分,这些框架的定位因素在一个地方确定它的植物和动物如何生活,繁殖和相互交流和周围环境。Pianka说:“在简单的计划中总结主要的生态特征将允许生态学家预测物种如何对新的环境条件和物种的侵入潜力作出反应。“这将告诉我们过去的生态位如何演变,甚至将来将如何发展,所有这些都将直接关系到气候变化的影响。”

  许多因素决定了高度复杂的生态环境,生态学家从未成功地以可预测的方式对其进行排序。然而,自从1972年以来,研究人员一直对这个想法感兴趣,当时进化生态学家罗伯特·麦克阿瑟(Robert MacArthur)提出以类似于化学周期表的方式来命令它们。在该表中,元素通过它们的原子序数(质子),电子的配置和某些化学性质的组合来排序。生态学的概念将是找到类似的方式来总结生态位的许多变量,并帮助预测不同大陆,但在类似环境中遥远相关的物种可能会有相似的特征演变。三维立体描绘的利基周期表。每个盒子代表一个蜥蜴利基(n1-n12)。来自不同地理区域或不同进化谱系(进化枝)的物种对独立演化特征,允许它们在各自的栖息地(生态收敛)中有效地使用类似的生态位。指示了两个这样的收敛对。1)蓝线表示来自北美的融合对Phrynosoma和来自澳大利亚的Moloch,以及2)绿线表示来自巴西的融合对Polychrus和来自非洲的Chamaeleo。实际上,生态位是多维的。德克萨斯大学奥斯汀分校今天描述的框架利用了Pianka和他的俄克拉何马大学的长期同事劳里维特收集的生态数据,他们共同在四大洲各种各样的栖息地进行了大约50年的实地工作。他们使用与134种蜥蜴有关的五个主要利基尺度(栖息地,饮食,生命史,代谢和防御,每个具有7-15个变量)的数据。生活在不同大陆的蜥蜴进化为填补可识别的类似的利基并具有相似的特征。模式被重复:澳大利亚沙漠蜥蜴以与非洲和美国沙漠蜥蜴相同的方式解决问题,即使它们与进化密切相关。他们为食物饲养,在一天中的某个时间保持活跃或不活跃,

  周期表利用了世界各地蜥蜴的这种融合演化,并利用了超过50个蜥蜴生态位维度的多维分析。只有三个维度占总变化的62%,这表明蜥蜴生态位受到严格限制。除了文件之外,研究人员还制作了一个网站,允许生态学家探索其发现。因为人们只是在三维层面上看到,在更多维度上可视化和理解复杂的利基是困难的,所以Pianka和他的同事们在网站上更容易地将其结果可视化,从而产生了旋转的三维图形。这些允许用户探索蜥蜴生态位进化过程中的限制和权衡,并揭示物种根据栖息地,体型,觅食模式,饮食习惯,生命史,新陈代谢,防守策略和/或时间和地点重叠或分离的方式活动。这项研究是Pianka和Vitt以及阿根廷科尔多瓦大学NicolásPelegrin和Texas A&M大学的Daniel B. Fitzgerald和Kirk O. Winemiller的合作。由国家地理学会和国家科学基金会等资助。

  Caspian Sea Evaporating As Temperatures Rise, Study Finds

  WASHINGTON — Earth’s largest inland body of water has been slowly evaporating for the past two decades due to rising temperatures associated with climate change, according to a new study led by The University of Texas at Austin.Water levels in the Caspian Sea dropped nearly 7 centimeters (3 inches) per year from 1996 to 2015, or nearly 1.5 meters (5 feet) total, according to the new study. The current Caspian sea level is only about 1 meter (3 feet) above the historic low level reached in the late 1970s. The study was published Aug. 29 in Geophysical Research Letters, a journal of the American Geophysical Union (AGU)

  Map of the Caspian Sea and Caspian drainage (enclosed by the red contour line). The Caspian Sea is surrounded by five countries: Russia, Kazakhstan, Turkmenistan, Iran, and Azerbaijan. Four tide gauge stations (1 = Makhachkala, 2 = Fort Shevchenko, 3 = Baku, and 4 = Turkmenbashi), from which the historical Caspian Sea level observation time series is derived, are marked by magenta dots. Photo credit: Jianli Chen/Geophysical Research Letters/AGU.Increased evaporation over the Caspian Sea has been linked to increased surface air temperatures. According to the study, the average yearly surface temperature over the Caspian Sea rose by about 1 degree Celsius (1.8 degrees Fahrenheit) between the two timeframes studied, 1979-1995 and 1996-2015. These rising temperatures are probably a result of climate change, said the study’s authors. Evaporation brought about by warming temperatures appears to be the primary cause of the current drop in sea level, and the decline will probably continue as the planet warms.

  The new study began after Wilson and Jianli Chen, the study’s lead author from The University of Texas at Austin Center for Space Research, used the Caspian Sea to calibrate data from the twin satellites of the GRACE mission, launched in 2002. By comparing measurements of the Caspian Sea from GRACE data and Earth-based measurements, the researchers helped improve the satellite data’s accuracy. In doing so, they noticed the Caspian Sea’s water levels were undergoing significant changes.“Once we got through with [the calibration], Jianli Chen said, ‘Well, you know, this is very curious. Why is this changing so much?’ ” Wilson said.Byron D. Tapley and Tatyana Pekker of the Center for Space Research worked on the study. The research team also included scientists from the P.P. Shirshov Institute of Oceanology, Moscow; Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Toulouse, France; and the Department of the Caspian Sea Level Problem, Institute of Geography, Baku, Azerbaijan.The researchers looked at the three primary influences on Caspian Sea water levels: water from rivers that drain into the sea, precipitation and evaporation.

  They compiled information about water level changes observed by satellites, records of precipitation and drainage into the sea from rivers, and estimations of precipitation and evaporation from climate models. The researchers then assembled a record of how much each of these factors contributed to observed changes in the Caspian sea level from 1979 to 2015.Evaporation contributed to about half of that decline; the combined effects of precipitation and river discharge changes contributed to the other half. According to the study, the observed evaporation rates are associated with increased surface air temperature and other climate factors such as surface humidity and wind.The new study provides the first convincing evidence that increased evaporation over the Caspian Sea is a more important driving force of Caspian sea level change than river discharge or precipitation, said Anny Cazenave, a CNES space geodesist at the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales at Observatoire Midi-Pyrénées in Toulouse, France, who was not involved in the study.Evaporation will have the biggest impact on the northern portion of the Caspian Sea because much of the water in that area is less than 5 meters (16 feet) deep, Wilson said. If the current trend of a 7-centimeter decrease per year continues at a steady rate, it would take about 75 years for the northern part of the sea to disappear, according to the new study.

  Wilson said the next step in this research is to project future changes in Caspian sea level using climate models. Although this study identified the trends in sea level and their causes, the researchers did not project specific estimates of how these levels might change in the future.

   研究成果二:研究发现,随着温度升高里海在蒸发

  根据新研究报告,里海的水位从1996年至2015年每年下降近7厘米,或近1.5米(5英尺)。目前的里海海拔只有1米(3英尺),高于20世纪70年代末达到的历史低点。该研究于8月29日在美国地球物理联盟(AGU)刊登的地球物理研究杂志发表,里海和里海排水地图(由红色轮廓线包围)。里海由五个国家包围:俄罗斯,哈萨克斯坦,土库曼斯坦,伊朗和阿塞拜疆。四个潮汐测量站(1 =马哈奇卡拉,2 =舍甫琴科堡,3 =巴库,4 =土库曼斯坦),其历史里海水位观测时间序列来源于其中,以洋红色点标记。里海的蒸发量增加与地表气温升高有关。根据研究,1979 - 1995年和1996 - 2015年两个研究时间段之间,里海每年的平均地表温度上升了约1摄氏度(1.8华氏度)。研究的作者说,气温上升可能是气候变化的结果。温暖气候带来的蒸发似乎是目前海平面下降的主要原因,随着地球暖化,下降可能会持续下去。

  UT地球科学杰克逊学院的地球物理学家克拉克•威尔逊(Clark Wilson)说,“从地球科学家的角度来看,这是一个有趣的地方,因为可以为所有的水量建造一种预算。” 。“真正的控制,导致它上下长时间真的很可能蒸发,这几乎完全由温度控制。位于欧洲和亚洲之间的里海是约37万平方公里(143,244平方英里)的蒙大拿州的大小。过去几百年来,水位发生了重大变化,但以前的研究无法确定变化的确切原因。里海由五个国家组成,拥有丰富的自然资源和多样的野生动物。海洋还含有石油和天然气储备,是周边国家渔业的重要资源。新研究开始于威尔逊和陈建立,德克萨斯大学奥斯汀空间研究中心的主要作者使用里海对2002年发射的GRACE任务的双卫星数据进行校准。通过比较测量研究人员从GRACE数据和基于地球的测量得知里海,研究人员帮助改善了卫星数据的准确性。他们注意到里海的水位正在发生重大变化。

  “一旦我们通过[校准],陈建立说:”嗯,你知道,这很好奇。为什么这么多变化?“威尔逊说。空间研究中心的Byron D. Tapley和Tatyana Pekker进行了研究。研究小组还包括莫斯科PP Shirshov海洋研究所的科学家; 法国图卢兹实验室空间学研究所 和阿塞拜疆巴库地理研究所里海问题部。研究人员研究了里海海水三个主要影响因素:流入海洋的河流,降水和蒸发。汇编了卫星观测的水位变化信息,河流降水和排水记录,以及气候模型降水和蒸发量的估算。研究人员随后汇集了这些因素对1979年至2015年里海观测变化的贡献。他们发现1979年至1995年,里海每年增加约12厘米(5英寸)。但是在1996年,到2015年,海平面每年平均下降近7厘米。从1996年开始根据研究记录,到2015年,里海的水平下降了近1.4米(4.5英尺)。蒸发量大约减少了一半; 降水和河流排放变化的综合影响贡献了另一半。根据研究,观察到的蒸发速率与表面空气温度和其他气候因素(如表面湿度和风)有关。新研究提供了第一个令人信服的证据,即里海湾的蒸发量是里海海平面变化比河流排放或降水更重要的推动力,“国家空间研究中心空间测地学家空间测绘学家安妮·卡泽诺夫说,法国图卢兹观景点比利牛斯省的空间, 没有参与研究。威尔逊说,蒸发将对里海北部产生最大的影响,因为该地区的大部分水深不到5米(16英尺)深。如果目前每年下降7厘米的趋势持续稳定,则北部海域将需要75年时间才能消失。威尔逊说,这项研究的下一步是使用气候模式预测未来的里海海平面变化。虽然这项研究确定了海平面及其原因的趋势,但研究人员没有对未来这些水平如何变化的具体估计进行预测。

  Stress Heightens Fear of Threats from the Past

  AUSTIN, Texas — Recognizing threats is an essential function of the human mind — think “fight or flight” — one that is aided by past negative experiences. But when older memories are coupled with stress, individuals are likely to perceive danger in harmless circumstances, according to a paper published today in the Proceedings of the National Academy of Sciences.The findings by researchers from Dell Medical School at The University of Texas at Austin, New York University and McGill University shed light on fear generalization, a core component of anxiety and stress-related disorders.“The human mind uses cues to danger learned over time for self-defense, but certain circumstances can cause people to misidentify those cues,” said Joseph Dunsmoor, lead study author and assistant professor of psychiatry at Dell Med. “Our research reveals that stress levels and the amount of time since an adverse event promote this type of overgeneralization.”Dunsmoor conducted the research as a postdoctoral fellow in the lab of Elizabeth Phelps, professor of psychology and neural science at New York University (NYU). Ross Otto, assistant professor of psychology at McGill University, also worked on the study as a postdoc at NYU.Post-traumatic stress disorder (PTSD) — which affects about 8 million adults every year — is one disorder characterized by the inability to discriminate threat from safety. Fear is triggered by harmless stimuli such as a car backfiring because they serve as reminders of trauma. By understanding how the mind identifies and responds to such triggers, scientists can develop better treatments for mental illnesses and disorders.“These findings provide important laboratory data that helps explain why PTSD symptoms are often exacerbated during times of stress, and how repeated stress and trauma in the battlefield may lead to increased risk for PTSD,” said Suzannah Creech, an associate professor of psychiatry at Dell Medical School who has spent her career working with veterans recovering from trauma. Creech was not involved in the study.“The research may help improve PTSD treatment outcomes for veterans in part by helping us understand how we may be able to prevent it in the first place. Central Texas has one of the highest concentrations of military veterans in the country, many of whom returned from the wars in Iraq and Afghanistan with the disorder,” she said.

  In the study, the researchers tested the effects of stress and time on a person’s ability to correctly identify a cue associated with a negative outcome. Study participants heard two tones, with one followed by a shock, set by the participant at the level of “highly annoying but not painful.” Then, researchers played tones in the range of the two frequencies and gauged participants’ expectations of shock by self-report and data on skin responses that indicate emotional arousal. When testing the range of tones, half of the participants were methodically primed to have higher cortisol levels through an arm ice bath, and half received a control arm bath with room temperature water.Researchers performed the test on two groups. One group took the shock expectancy test immediately after the initial shock. The second group took the test 24 hours after the initial shock. Both groups underwent the stress/control priming activity just before the shock expectancy test.When tested immediately after the initial shock, stress level did not significantly affect the participants’ fear of shock and accuracy in identifying the associated tone. However, when tested 24 hours later, stress level did heighten participants’ fear response and negatively impacted their ability to identify the tone associated with shock. The group tested 24 hours later without raised cortisol levels only had slightly heightened fear responses and retained the ability to identify the associated tone.“The effects of stress and memory on how humans generalize fear is largely unexamined,” Dunsmoor said. “This study provides new data that will help us care for people with disordered patterns of fear and worry.”

  研究成果三:压力加重了对过去威胁的恐惧

  奥斯汀,德克萨斯州 - 认识到威胁是人类思想的重要功能 - 认为“打架或飞行” - 由过去的负面经验所辅助。根据今天在“ 美国国家科学院院报”上发表的一篇文章,当年纪较大的记忆与压力相结合时,个人很可能会在无害环境中感受危险。德克萨斯大学德克萨斯大学奥斯汀分校,纽约大学和麦吉尔大学的研究人员的研究结果揭示了恐惧泛化,焦虑和压力相关疾病的核心组成部分。戴尔医学院的首席研究作者兼精神病学助理教授约瑟夫·杜斯穆尔(Joseph Dunsmoor)说:“人类的思想使用线索来随着时间的推移自我维护,但某些情况可能会导致人们误认这些线索。” “我们的研究表明,压力水平和不利事件发生的时间量会促使这种过度的普遍化。Dunsmoor 在纽约大学(NYU)的心理学和神经科学教授Elizabeth Phelps的实验室担任博士后研究员。麦吉尔大学心理学助理教授罗斯·奥托(Ross Otto)也在纽约大学做博士后研究。创伤后应激障碍(PTSD) - 每年影响约800万名成年人 - 是以无法区分威胁与安全为特征的一种疾病。恐惧是由无害刺激引起的,如汽车反火,因为它们作为创伤的提醒。通过了解心灵如何识别和响应这些触发因素,科学家可以开发更好的治疗精神疾病和疾病。“这些研究结果提供了重要的实验室数据,有助于解释为什么PTSD症状在压力发作期间经常加剧,以及战场中多么重复的压力和创伤可能导致PTSD风险增加,” 戴尔精神病学副教授Suzannah Creech说,医学院已经花了她的工作与退伍军人恢复创伤。Creech没有参与研究。

  “这项研究可能有助于改善退伍军人的PTSD治疗结果,部分原因是帮助我们了解我们如何能够首先阻止退伍军人的治疗。中德克萨斯州是该国最高级别的退伍军人之一,其中许多人在伊拉克和阿富汗的战争中从混乱中恢复过来,“她说。在研究中,研究人员测试了压力和时间对一个人正确识别与否定结果相关联的能力的能力的影响。研究参与者听到两个音调,一个是震惊,由参与者设置在“非常讨厌但不痛苦”的水平。然后,研究人员在两个频率的范围内播放音调,并测量参与者对自己的震惊期望 - 表示情绪唤醒的皮肤反应的报告和数据。当测试音调范围时,一半的参与者通过手臂冰浴有条理地注射皮肤醇水平较高,一半用室温水接受对照手臂浴。研究人员对两组进行了测试。一组在初次冲击后立即进行了休克预期测试。第二组在初次休克24小时后进行测试。两组在冲击预期试验之前进行了压力/控制启动活动。初次冲击后立即进行测试时,应激水平并不会明显影响参与者对辨认相关音调的冲击和准确性的恐惧。然而,24小时后进行测试时,压力水平提高了参与者的恐惧反应,并对其识别与休克相关的语气的能力产生了负面影响。该组在24小时后测试,没有升高的皮质醇水平只有略高的恐惧反应,并保留识别相关色调的能力。邓斯穆尔说:“压力和记忆对人类如何概括恐惧的影响在很大程度上是未经审查的。” “这项研究提供了新的数据,帮助我们照顾无序的恐惧和忧虑的人。”

  四、校园环境和安全保障

  1.住宿和饮食

  We believe it's important for our community to have access to extraordinary living, learning and working experiences beyond the classroom. By providing clean, attractive, safe facilities for campus residents and diverse, high-quality food options — along with partnerships and programs dedicated to improving quality of life for our students, faculty and staff — we work hard to create a positive, comfortable environment on the Forty Acres.Living on campus is about more than sharing a room. It's about building community. Our 14 campus residence halls support learning and growth outside the classroom with individual support, special programs and unique learning environments.From the buffets at J2 or Kinsolving Dining to the wide range of popular restaurants across campus, Longhorns never have to look far for a good place to eat.

  我们相信,我们的社区必须能够在课堂之外获得非凡的生活,学习和工作经验。通过为校园居民提供干净,有吸引力,安全的设施和多样化的高质量食物选择。努力作为一个提高学生,教职员工的生活质量的合作伙伴,我们将在四十英亩的校园里努力营造一个积极、舒适的生活环境.。不仅仅是分享一个房间。这是关于建立社区。我们的14个校园宿舍通过个人支持,特殊课程和独特的学习环境,支持课堂外的学习和成长。从J2或Kinsolving Dining的自助餐到校园范围广泛的受欢迎的餐馆,Longhorns从来不必去寻找一个好地方,无论走到哪里你都可以享受生活。

  2.校园设施

  Spend just a minute on our campus and you'll quickly see how The University of Texas at Austin is an immense and beautiful world all its own. And with our dozens of museums, libraries, centers, institutes and special venues spread across the campus and the city, each with its own unique exhibits and programming, you'll never be bored. Designed to enhance the experience of not just current students, faculty, and staff but also community members and visitors from around the world, our many campus destinations will educate, delight and amaze.

  Blanton Museum of Art:One of the foremost university art museums in the country, with the largest and most comprehensive collection of art in Central Texas.

  Cactus Cafe:An intimate live music performance venue showcasing top local, regional, national and international acoustic music acts

  Darrell K Royal-Texas Memorial Stadium:One of the largest stadiums in the nation — and home to our beloved Longhorns football team.

  Dolph Briscoe Center for American History:A leading history research center featuring rich collections on Texas and U.S. history.

  Frank Erwin Center:A multipurpose entertainment and sports arena providing benefits to the entire Central Texas community, and home to the men's and women's basketball teams.

  Gregory Gym Aquatic Complex:An impressive aquatic complex with indoor and outdoor lap and leisure pools, a spa, deck space, and more.

  在校园里度过的每一分钟,你都会很快看到德克萨斯大学奥斯汀分校是一个非常美丽的世界。随着我们数十个博物馆、图书馆、中心、研究所和特殊场所遍布校园和城市,每个都有自己独特的展览和节目,你永远不会感到无聊。旨在增强不仅来自当前学生,教职员工和工作人员以及来自世界各地的社区成员和访客的经验,我们的许多校园目的地将教育,欣赏和惊奇。

  布兰坦艺术博物馆:国家最重要的大学艺术博物馆之一,拥有中德克萨斯州最大和最全面的艺术收藏。

  仙人掌咖啡厅:一个距离很近的的现场音乐表演场地,展示当地、地区、国家和国际顶级的音乐表演。

  达拉尔K皇家德克萨斯纪念体育场:全国最大的体育场之一 - 我们心爱的长角牛足球队的家园。

  Dolph Briscoe美国历史中心:一个领先的历史研究中心,拥有德克萨斯和美国历史的丰富收藏。

  弗兰克·欧文中心:一个多用途娱乐和体育竞技场为整个中德克萨斯州社区提供福利,并为男子和女子篮球队提供福利

  格雷戈里健身水上综合设施:一个令人印象深刻的水上综合设施,室内和室外的膝盖和休闲游泳池,水疗中心,甲板空间等等。

  哈里·兰索姆中心:国际知名的人文科学研究图书馆和博物馆,为作家和艺术家的创作过程提供独特的见解。

  学生活动中心:最先进的,获奖和环保的学生聚会空间。

  五、知名校友(源自网络,因篇幅原因无法逐一呈现,排名不分先后)

  马克斯韦尔 库切(2003年诺贝尔文学奖得主)

  E. Donnall Thomas (1990年诺贝尔生理学或医学奖得主)

  赫尔曼·约瑟夫·马勒 (1946年诺贝尔生理学或医学奖得主)

  George Davis Snell(1980年诺贝尔生理学或医学奖得主)

  伊利亚·普里高津 (1977年诺贝尔化学奖得主)

  Gunnar Myrdal (1974年诺贝尔经济学奖得主)

  Alva Myrdal (1982诺贝尔和平奖得主)

  温伯格 (1979年诺贝尔物理学奖得主)

  Norman Hackerman (国家科学奖章以及万尼瓦尔布希奖获得者- 化学与生化)

  Steven Weinberg (国家科学奖章获得者 - 物理)

  约翰·阿奇博尔德·惠勒 (国家科学奖章获得者 - 物理)

  E. Allen Emerson (图灵奖获得者 - 计算机科学)

  Allen J. Bard (沃尔夫奖于韦尔奇奖获得者 - 化学于生化)

  Karl August Folkers (韦尔奇奖获得者 - 化学于生化)

  Adam Heller (国家技术于创新奖章获得者 - 化学工程)

  Grant Willson (国家技术于创新奖章获得者 - 化学工程)

  George Kozmetsky (国家技术于创新奖章获得者)

  Eric V. Anslyn (卡米尔德莱弗斯教师学术奖 - 化学与生化)

  Michael J. Krische (卡米尔德莱弗斯教师学术奖 - 化学)

  Hal Alper (卡米尔德莱弗斯教师学术奖 - 化学工程)

  John B. Goodenough (恩里科费米奖 - 机械工程)

  William Jefferys (美国宇航局奖 - 天文学)

  米迦勒戴尔(戴尔电脑公司的创始人/CEO)

  加里·凯利(美国西南航空公司的CEO)

  戴维格芬(美国梦工厂动画的共同创办人)

  John R. Hubbard(南加利福尼亚大学校长)

  Gene Nichol(威廉玛丽学院校长)

  James Moeser(北卡罗来纳大学教堂山分校校长)

  Leon A. Green(西北大学法学院系主任)

  F. Murray Abraham (第57届奥斯卡最佳男主角)

  Marcia Gay Harden (第73届奥斯卡最佳最佳女配角)

  Renée Zellweger(第75届奥斯卡最佳女配角)

  伯德·詹森(前美国总统第一夫人)

  萝拉·威尔斯·布希(前美国总统第一夫人)

  罗杰·克莱门斯(MLB投手)

  Ian Crocker(混合泳世界纪录保持者)

  Rick Carey (仰泳/混合泳前世界纪录保持者)

  Aaron Peirsol(仰泳/混合泳世界记录保持者)

  Brendan Hansen(蛙泳前世界记录保持者/混合泳世界纪录保持者)

  以上内容由出国留学网m.liuxue86.com独家翻译,版权归出国留学网所有,未经出国留学网授权许可,任何公司任何人不得转载,违者必追究法律责任!

  推荐阅读:

  2017年美国奖学金申请材料清单

  2017年美国奖学金申请详细流程

  中国留学生可申请的美国奖学金种类


分享

热门关注

留学英国选择哪个大学好 英国临海大学有哪些

热门临海院校

留学俄罗斯英语授课课程有哪些

俄罗斯英语授课课程

高中日本出国留学需要什么条件2021

留学日本高中

新加坡私立大学有哪些 留学新加坡私立大学介绍

新加坡私立大学介绍

新加坡大学有哪些知名大学

新加坡知名大学推荐

德克萨斯奥斯汀分校怎么样

德克萨斯大学奥斯汀分校

美国得克萨斯大学奥斯汀分校好不好?

美国留学

美国德克萨斯州有哪些比较好的大学

美国热门院校

美国加州大学洛杉矶分校怎么样?

美国加州大学

美国大学主校与分校有哪些区别?

美国留学

热门问答