瑞典皇家理工学院基本概况

  三、教研优势

  1.概况

  Strategic Research Areas - investing in a bright future.KTH has a leading role in five strategic research areas (SRA); Information and communication technology (ICT), Molecular Bioscience, Transport, Production and e-Science. Among the other areas we have a substantial role within Energy. The strategic research areas are efforts by the Swedish government in certain selected areas.The leading role will help to deliver a step change in research, enabling KTH to bring forward a new generation of researchers, deepen existing research programmes known for their world-leading status and create new research environments. A critical consideration from the start of the strategic research areas has been engaging society in the research programmes. Focus will also be placed on ensuring that results have impact within society. Research activities are being driven by international caliber individuals.The strategic research areas represent an opportunity for KTH to secure a world-leading position within key research fields that will affect the future of society. KTH is stepping up to the challenge by actively investing in the people, skills and processed necessary to deliver a bright future.

  战略研究领域 - 投资光明的未来,KTH在五个战略研究领域(SRA)发挥主导作用; 信息和通信技术(ICT)、分子生物科学、运输、生产和电子科学。在其他领域,我们在能源领域发挥了重要作用。战略研究领域是瑞典政府在某些特定领域的努力。主导角色将有助于推动研究的转变,使瑞士皇家理工学院能够推出新一代研究人员,深化现有的研究计划,以其世界领先地位而闻名,并创造新的研究环境。从战略研究领域开始,一个关键的考虑是使社会参与研究项目。还将重点确保结果在社会中产生影响。研究活动是由国际口径的个人推动的。战略研究领域代表了KTH在确定影响社会未来的关键研究领域中保持世界领先地位的机会。瑞士皇家理工学院正在加紧挑战为发展光明的未来积极投资于人才和技能。

  2.重点研究领域简介

  SciLifeLab Stockholm: Molecular biosciences for future health and society

  This project will establish a new national resource center in Sweden – the Science for Life Laboratory (SciLifeLab) – devoted to high-throughput bioscience with a focus on biomedicine, including genome and proteome profiling, bioimaging and bioinformatics. SciLifeLab is formed jointly by the four universities, the Royal Institute of Technology (KTH), the Karolinska Institute (KI), Stockholm University (SU) and Uppsala University (UU). SciLifeLab will be divided in two nodes – SciLifeLab Uppsala and SciLifeLab Stockholm. In Stockholm, KTH, KI and SU will jointly run the activities, thus combining the different profiles and strengths of the three. With the four universities involved, Science for Life Laboratory will create a uniquely powerful regional cluster.Academic research as well as the health care system and the life science industry in Sweden, will benefit from SciLifeLab by active collaborations, access to advanced instrumentation and active programs for knowledge transfer. Gathered research groups at SciLifeLab will reach a critical mass and create an internationally outstanding research environment for high-throughput biosciences and translational medicine.The visionThe vision is to make SciLifeLab one of the top-five centers in the world for high-throughput bioscience - focusing on large-scale DNA sequencing, expression analysis, protein profiling, cellular profiling, advanced bioinformatics, biostatistics and systems biology - by providing an internationally competitive resource for multi-disciplinary research with advanced technological infrastructure. SciLifeLab will enable researchers to conduct massive global analyses of genes, transcripts and proteins in humans and associated microbes, such as viruses and bacteria, and to elucidate the complex interactions between the diverse molecular components of living cells, tissues, and organs primarily related to human disease.The strategic value:Basic and medical research at SciLifeLab will yield insights into the understanding of genes, gene function and mechanisms of diseases. The research is likely to lead new diagnostics and the identification of new drug targets and candidates. Many of the scientists of the SciLifeLab have experience of commercialization of inventions, which is supported by dedicated offices at the host universities.Achieving scientific excellence:SciLifeLab Stockholm will physically bring together researchers in molecular biosciences from the three Stockholm universities. An instrument park will be built, laying the ground for a unique infrastructure. Synergistic effects will be reached by the concentration of broad multidisciplinary expertise and the advanced resources available. Initially, four infrastructure platforms will be established, each harboring more specialized platform facilities. During following years, SciLifeLab will develop and other platform facilities might be added.

  The genomics platform:aims to be a center for high-throughput genome analysis with relevance for medical research. Personnel from KTH and KI will move with their instrumentation to SciLifeLab. Investments in new instrumentation will build its capabilities to provide high-throughput sequencing at a competitive level.The proteomics and proteome profiling platform:will set up high-throughput methods for analyzing clinically relevant biosamples using state-of-the-art mass spectrometry and antibody-based methods. A major focus will be on protein profiling of biobank samples.The high-throughput functional genomics platform:will develop new facilities for whole genome screens based on RNAi technology and various cell-based assays.The bioimaging and functional biology platform:aims to develop methods and strategies for whole genome screens based on RNAi technology and various cell-based assays. The bioimaging facility aims to be a center for molecular imaging im medical research using different techniques in microscopy.The bioinformatics and systems biology platform:will provide advanced bioinformatics and statistics services to the users of the high-throughput platforms. Research groups from the three universities will move to SciLifeLab to form a competitive environment with competences in bioinformatics, biostatistics, computational biology and systems biology.

  研究领域一:SciLifeLab斯德哥尔摩:未来健康和社会的分子生物学

  该项目将在瑞典建立一个新的国家资源中心 - 科学生命实验室(SciLifeLab) - 专注于生物医学,包括基因组和蛋白质组分析,生物成像和生物信息学在内的高通量生物科学。SciLifeLab由四所大学皇家理工学院(KTH)、卡罗林斯卡研究所(KI)、斯德哥尔摩大学(SU)和乌普萨拉大学(UU)联合组建。SciLifeLab将分为两个节点 - SciLifeLab Uppsala和SciLifeLab斯德哥尔摩。在斯德哥尔摩,皇家理工学院,卡罗林斯卡研究所和斯德哥尔摩大学将共同开展活动,结合三者的不同形象和优势。随着四所大学的参与,科学生命实验室将创建一个独特强大的区域集群。学术研究以及瑞典的医疗保健系统和生命科学行业将通过积极的合作,获得先进的仪器和积极的知识转移计划,从SciLifeLab中获益。SciLifeLab的聚集研究团队将达到关键数量,为高通量生物科学和翻译医学创造国际上优秀的研究环境。愿景:目标是使SciLifeLab成为世界前五大中高端生物科学中心之一,专注于大规模的DNA测序,表达分析,蛋白质分析,细胞分析,先进的生物信息学,生物统计学和系统生物学 - 通过提供具有国际竞争力的多学科研究资源,具有先进的技术基础设施。SciLifeLab将使研究人员能够对人类和相关微生物(如病毒和细菌)中的基因,转录本和蛋白质进行大规模的全球分析,并阐明与人类主要相关的活细胞,组织和器官的不同分子成分之间的复杂相互作用疾病。战略价值:SciLifeLab的基础和医学研究将对基因,基因功能和疾病机制的理解产生深刻的见解。这项研究有可能引发新的诊断和鉴定新的药物靶点和候选人。SciLifeLab的许多科学家都拥有发明商业化的经验,这得到了主办大学的专门办公室的支持。实现科学卓越:斯德哥尔摩SciLifeLab将把来自斯德哥尔摩三所大学的分子生物科学研究人员聚集在一起。将建成一个乐园,为独特的基础设施奠定基础。协调效应将通过广泛的多学科专长和可用的先进资源的集中来实现。最初,将建立四个基础设施平台,每个都拥有更专业的平台设施。在接下来的几年里,SciLifeLab将会开发其他的平台设施。基因组学平台;旨在成为与医学研究相关的高通量基因组分析的中心。来自KTH和KI的人员将随着他们的工具移动到SciLifeLab。新仪器的投资将建立在竞争水平上提供高通量排序的能力。蛋白质组学和蛋白质组分析平台,将使用最先进的质谱法和基于抗体的方法建立用于分析临床相关生物样品的高通量方法。重点将在于生物样本的蛋白质分析。高通量功能基因组学平台,将开发基于RNAi技术和各种基于细胞的测定法的全基因组筛选新设施。生物成像和功能生物学平台,旨在开发基于RNAi技术和各种基于细胞的测定法的全基因组筛选方法和策略。生物成像设施旨在成为使用不同显微技术的分子成像技术医学研究的中心。生物信息学与系统生物学平台,将为高吞吐量平台的用户提供先进的生物信息学和统计服务。三大研究组织将迁至SciLifeLab,形成具有生物信息学,生物统计学,计算生物学和系统生物学能力的竞争环境。

  Swedish e-Science Research Center - SeRC

  The Swedish e-science Research Centre (SeRC) is formed by the universities in Stockholm and Linköping – KTH, Linköping University (LiU), Stockholm University (SU) and Karolinska Institutet (KI) – around the two largest high-performance computing (HPC) centres in Sweden: PDC at KTH and NSC at LiU.Research at SeRC is focused on the collaboration between tool makers and tool users, and brings together a core of nationally leading IT research teams with expertise in e-Science method development and leading scientists in selected application areas. SeRC will constitute a leading visionary e-Science node with a national scope and strong international ties Substantially increased collaboration between applied and method-oriented groups is needed, and SeRC will provide a platform for this. Our approaches to reach these goals are:Formation of e-Science Communities that connect application groups with relevant core e-Science groups and computer experts at PDC and NSC.Research in core e-Science methods such as distributed resources, database technology, numerical analysis, visualization and interaction, mathematical modeling and parallel algorithms, focusing on problems critical for several e-Science communities.Much closer collaboration between PDC and NSC, and a substantial increase in advanced support staff, which will turn the centers into comprehensive e-Science enablers.SeRC is also taking a national responsibility in the e-Science area in terms of hosting a large part of the Swedish e-Science infrastructure through PDC and NSC. Already today these two high performance computing centers take the nationally leading role, which will be further developed within SeRC beyond the hardware aspect of e-Infrastructure.e-Science communities,A key feature of research within SeRC are the e-Science communities, which connect application oriented groups with relevant core e-Science groups. Each of the communities will thus comprise computer experts, e-Science method developers and scientists from application areas who jointly run e-Science projects. The projects will be characterized by strong novelty in terms of technology (high end computing, novel architectures, grid, databases, etc.), methodology (new theories, models, methods, algorithms and software) and application (new application areas with large potential gains from e-Science tools). There will not be a fixed set of communities, but they will be created dynamically as the research environments evolve.

  Research will also focus on some particularly challenging areas where algorithmic progress will be essential, such as multiscale, multiphysics and stochastic problems as well as application fields like turbulent and multiphase flow and high frequency wave propagation.Mathematical Modeling: Computation oriented mathematics, statistics and informatics belong to the core of e-Science. The relevant mathematical theories and tools can take many forms, including dynamical systems, stochastic models, differential equations etc. Analytic methods as well as complex simulation based ditto have their given place. For example, the goal for systems biology is to identify the underlying biological system, or network of interacting parts (genes, proteins, metabolites, cells, organs), that causes the observed dynamics and correlation patterns. Network algorithms are based on Boolean, graphical, ordinary differential equations or Bayesian models, and standard techniques include bifurcation analysis of dynamic systems. Mathematically challenging new approaches involve connections between algebraic graph theory and decentralized control theory, or the use of so-called “dissipativity theory,” for the global analysis of underlying dynamics.Parallel Algorithms and Performance Optimization: With increasing number of cores per processor follow demands on code optimisation and efficient parallelisation. Development tools and languages developed during the next 5-10 years will need advances in component-based modeling, checking, parallel constructs, debugging, and development support.Future development of PDC and NSC,The two largest HPC centers in Sweden, NSC and PDC, both take part in SeRC. One of the most important goals of SeRC is to tighten the existing collaborations to align efforts and have the centers act with a single voice both in Sweden and on the international arena. Through SeRC collaborations will be further developed and deepened ensuring the development of complementary competences and well aligned hardware procurements.Transforming NSC and PDC from HPC hardware supporters to e-Science enablers is another important mission. The main mechanism for this will be a substantial increase at the centers of application experts and software engineers working in the SeRC e-Science communities. In order to make sure that they have a strong coupling to the research areas, each one of them will be closely associated with an application or core e-Science area within SeRC.

  研究领域二:瑞典电子科学研究中心--SRC

  瑞典电子科学研究中心(SeRC)由斯德哥尔摩的大学和Linköping - KTH,林雪平大学(LiU),斯德哥尔摩大学(SU)和卡罗林斯卡研究所(KI)组成,围绕两个最大的高性能计算(HPC) )中心:KTH的PDC和LiU的NSC。瑞典电子科学研究中心的研究重点是工具制造商和工具用户之间的协作,汇集了国内领先的IT研究团队的核心,具有电子科学方法开发方面的专业知识和领先的科学家在选定的应用领域。瑞典电子科学研究中心将构成国际范围和强大国际关系的领先远见的e-Science节点,需要大量加强应用型和面向方式的团队之间的协作,瑞典电子科学研究中心将为此提供一个平台。我们实现这些目标的方法是:形成电子科学社区,将应用组与相关的核心电子科学小组和PDC和NSC的计算机专家连接起来。研究核心电子科学方法,如分布式资源,数据库技术,数值分析,可视化和交互,数学建模和并行算法,重点关注几个电子科学社区的关键问题。PDC和NSC之间的密切合作,以及大量增加的高级支持人员,这将使这些中心成为全面的电子科学推动力。通过PDC和NSC,SeRC在电子科学领域也承担了大部分瑞典e-Science基础设施的国家责任。目前,这两个高性能计算中心都处于国家领先地位,在电子基础设施的硬件方面,SeRC将进一步发展。电子科学社区SERC研究的一个重要特征是电子科学社区,将面向应用的群体与相关的核心电子科学小组联系起来。因此,每个社区将由计算机专家,电子科学方法开发人员和联合运行电子科学项目的应用领域的科学家组成。这些项目的特点是技术(高端计算,新型架构,网格,数据库等),方法论(新理论,模型,方法,算法和软件)和应用(具有巨大潜力的新应用领域电子科学工具的收益)。不会有固定的社区,但随着研究环境的发展,它们将被动态地创建。电子科学社区的例子有:波浪:波浪社区将重点关注波浪传播问题的数值方法,包括电磁学,航空声学,声学学和数值分析的研究人员。

  流体:这个社区的核心活动是开发有效和准确的湍流模拟方法。气候与环境:社区将致力于通过更好的数值技术实现气候建模,用于时空离散化,代码可扩展性和不同气候模型组件间有效耦合的算法。生物信息学和序列数据库:生物信息学社区将重点将生物信息学与实验、膜蛋白分类和结构预测、分子建模、比较基因组学和数据库组织以及新算法(包括分布式计算和存储)相结合以识别相关性在全基因组比对和准确的方法来匹配光谱与蛋白质组学中的数据库。复杂疾病:复杂疾病的电子科学社区最初将重点放在神经科学,癌症和心血管疾病上,重点是分布式数据库工具的开发和建模和计算的安全性。粒子模拟:这个电子科学社区的核心是基于粒子的建模,使用例如时间依赖的分子动力学或蒙特卡罗模拟。电子结构:该社区将重点关注基于密度泛函理论和Hartree-Fock方法的第一原理计算,还将重点放在多尺度模拟技术上。核心电子科学:电子科学工具基于几个IT学科的组件。SeRC汇集了IT核心科学领域的一批领导团队,并将其与战略应用领域联系起来。核心电子科学领域是:分布式资源和数据库技术的方法:这些方法和工具将用于增强上一节描述的电子科学社区的资源使用和数据管理。将重点放在数据和计算的无缝集成上。该联盟将协调安全基础设施,允许单点登录和资源之间的轻松过渡。还将研究用于资源分配和调度的虚拟化技术和基于市场的算法,以及用于解决各种网格服务的可扩展性的分布式算法和设计技术。分布式服务的可扩展自我管理也将得到解决。可视化和图像科学:在感知图像中的内容方面,人的视觉感受优于今天的计算机。通过生成表示大型和复杂数据集的内容的图像,可视化建立在这种人类能力之上。在图像科学中,目标是将复杂的时空模式转化为人类可以理解的形式。交互性在可视化和图像科学工作流程中也起着核心作用。为了应对不断增长的信息流所带来的挑战,需要针对具体的应用需求开发和量身定做新的可视化方法。我们还设想了可视化和图像科学方法的融合,导致可视化和图像处理流水线中的复杂知识表示,以进一步减少数据大小,处理不确定性,并突出感兴趣的领域。未来可视化资源和用户的分布式性质也需要在高质量远程渲染和协同可视化等领域进行研究。电子科学社区的另一个高度优先领域是将数学方法(主要用于数据挖掘)整合到视觉知识发现环境中,使他们能够有效地处理大规模和高维数据。数值分析:数字算法的开发对于成功的基于电子科学的研究至关重要,通常在速度增益方面匹配或超过硬件的改进,特别是在最近才适用于计算机模拟的研究领域。一个重要的研究方向是开发一般软件和理论的第一原理计算数学建模。研究还将重点关注一些特别具有挑战性的领域,其中算法进展将是至关重要的,如多尺度,多物理场和随机问题以及诸如湍流和多相流和高频波传播等应用领域。数学建模:面向计算的数学,统计学和信息学是电子科学的核心。相关的数学理论和工具可以采取多种形式,包括动力系统、随机模型、微分方程等。分析方法以及基于复杂模拟的同位素具有给定的地位。例如,系统生物学的目标是识别潜在的生物系统或相互作用部分(基因、蛋白质、代谢物、细胞、器官)的网络,这导致观察到的动力学和相关模式。网络算法基于布尔,图形,普通微分方程或贝叶斯模型,标准技术包括动态系统的分岔分析。并行算法和性能优化:每个处理器的核心数量越来越多,都遵循对代码优化和高效并行化的要求。未来5-10年开发的开发工具和语言将需要基于组件的建模,检查,并行构造,调试和开发支持的进展。PDC和NSC的未来发展:瑞典两家最大的高性能计算中心,NSC和PDC都参加了SeRC。SeRC最重要的目标之一就是收紧现有的合作协调工作,使瑞典和国际舞台上的中心都以单一的方式发挥作用。通过SeRC的合作将进一步发展和深化,确保互补能力的发展和硬件采购的良好协调。将HPC硬件支持者的NSC和PDC转变为e-Science推动因素是另一个重要任务。在SeRC e-Science社区工作的应用专家和软件工程师中心,其主要机制将大大增加。为了确保它们与研究领域有很强的联系,其中每一个将与SeRC内的应用或核心电子科学领域密切相关。

  请继续阅读第3页为瑞士皇家理工学院校园生活和知名校友详细介绍。


分享

热门关注

留学英国选择哪个大学好 英国临海大学有哪些

热门临海院校

留学俄罗斯英语授课课程有哪些

俄罗斯英语授课课程

高中日本出国留学需要什么条件2021

留学日本高中

新加坡私立大学有哪些 留学新加坡私立大学介绍

新加坡私立大学介绍

新加坡大学有哪些知名大学

新加坡知名大学推荐

瑞典皇家理工学院怎么样

皇家理工学院

瑞典皇家理工学院申请攻略 怎样申请瑞典名校

瑞典留学

留学麻省理工学院还是加州理工学院?

大学留学美国

苏黎世理工学院和洛桑联邦理工学院有哪些区别

瑞士留学

新加坡理工学院怎么样 留学新加坡理工学院有哪些优势

新加坡理工学院优势

热门问答