数学专业寒假学习计划

  充实地过好这个假期,会让你的考研复习有一个质的飞跃,以下是出国留学网小编整理的数学专业寒假学习计划,欢迎参考,更多详细内容请点击出国留学网查看。

  寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信**教育,一定是一个正确的选择。以下是领先教育为20**考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。

  首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

  1 第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

  2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

  6.掌握极限的性质及四则运算法则.

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  2第二阶段复习计划:

  复习高数书上册第二章1-3节,需达到以下目标:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  3 第三阶段复习计划:

  复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

  1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

  2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

  3.掌握用洛必达法则求未定式极限的方法.

  4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  4 第四阶段复习计划a

  复习高数书上册第四章 第1-3节。需达到以下目标:

  1.理解原函数的概念,理解不定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  5 第五阶段复习计划

  复习高数书上册第五章第1-3节。达到以下目标:

  1.理解定积分的几何意义。

  2.掌握定积分的性质及定积分中值定理。

  3.掌握定积分换元积分法与定积分广义换元法.

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  6 第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

  2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。

  3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

  本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

  小编精心推荐

  学习计划 | 复习计划 | 新学期学习计划 | 学习方法

  小编精心推荐

  学习计划 | 复习计划 | 新学期学习计划 | 学习方法

分享
qqQQ
qzoneQQ空间
weibo微博
《数学专业寒假学习计划.doc》
将本文的Word文档下载,方便收藏和打印
下载文档

热门关注

五年级暑假在家学习计划

在家学习计划

高二个人暑假学习计划2021

个人暑假计划

初二学生的暑假学习计划

初二暑假计划

高二学生暑假学习计划范文

高二暑假学习计划范文

2021小学生个人暑假学习计划范文

学习暑假计划

高中寒假学习计划范文

寒假学习计划

初中寒假学习计划范文

寒假学习计划

高二寒假学习计划

寒假学习计划

高一寒假学习计划范文

寒假学习计划

2021高三寒假学习计划

寒假学习计划
付费下载
付费后无需验证码即可下载
限时特价:4.99元/篇 原价10元
微信支付

免费下载仅需3秒

1、微信搜索“月亮说故事点击复制

2、进入公众号免费获取验证码

3、输入验证码确认 即可复制

4、已关注用户回复“复制”即可获取验证码

微信支付中,请勿关闭窗口
微信支付中,请勿关闭窗口
×
温馨提示
支付成功,请下载文档
咨询客服
×
常见问题
  • 1、支付成功后,为何无法下载文档?
    付费后下载不了,请核对下微信账单信息,确保付费成功;已付费成功了还是下载不了,有可能是浏览器兼容性问题。
  • 2、付费后能否更换浏览器或者清理浏览器缓存后下载?
    更换浏览器或者清理浏览器缓存会导致下载不成功,请不要更换浏览器和清理浏览器缓存。
  • 3、如何联系客服?
    如已按照上面所说方法进行操作,还是无法复制文章,请及时联系客服解决。客服微信:ADlx86
    添加时请备注“文档下载”,客服在线时间为周一至周五9:00-12:30 14:00-18:30 周六9:00-12:30

  充实地过好这个假期,会让你的考研复习有一个质的飞跃,以下是出国留学网小编整理的数学专业寒假学习计划,欢迎参考,更多详细内容请点击出国留学网查看。

  寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信**教育,一定是一个正确的选择。以下是领先教育为20**考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。

  首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

  1 第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

  2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

  6.掌握极限的性质及四则运算法则.

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  2第二阶段复习计划:

  复习高数书上册第二章1-3节,需达到以下目标:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  3 第三阶段复习计划:

  复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

  1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

  2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

  3.掌握用洛必达法则求未定式极限的方法.

  4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  4 第四阶段复习计划a

  复习高数书上册第四章 第1-3节。需达到以下目标:

  1.理解原函数的概念,理解不定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  5 第五阶段复习计划

  复习高数书上册第五章第1-3节。达到以下目标:

  1.理解定积分的几何意义。

  2.掌握定积分的性质及定积分中值定理。

  3.掌握定积分换元积分法与定积分广义换元法.

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  6 第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

  2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。

  3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

  本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

  小编精心推荐

  学习计划 | 复习计划 | 新学期学习计划 | 学习方法

  小编精心推荐

  学习计划 | 复习计划 | 新学期学习计划 | 学习方法

一键复制全文