南洋理工大学物理和数学科学学院成立于2005年,可申请的学位包括本科、硕士及博士,那么该学科有哪些重要的研究领域呢?跟着出国留学网来详细了解一下吧。
一、学科纵览
我们提供三个核心领域的本科理学士(荣誉)课程,以及研究生博士和理学硕士课程:
这三个部门共有100多名教职员工,250名全职研究人员和25名行政人员。超过2000名本科生注册我们的理学士(荣誉)课程,350多名研究生注册我们的博士和理学硕士课程。
SPMS综合体位于南大主要学术综合体南脊的尖端,于2009年7月21日由新加坡教育部长兼国防部第二部长Ng Eng Hen博士正式开放。这个科学综合体是由努力为教育和研究提供有利的环境。化学部门拥有一系列尖端化学设备,包括最先进的核磁共振仪器和质谱仪。它的安全功能 模仿牛津化学大楼的建筑,该建筑被认为是科学界最安全的设计之一。
数学科学部分设计有良好的交互式会议空间,以促进教师,教师和学生之间关于数学问题的讨论。它还配备了高性能计算机设施,用于数学的现代计算应用的教育和研究,生物信息学,大数据分析,密码学和密码分析等领域。物理和应用物理部门拥有众多设备齐全的教学和研究实验室。它拥有机械研讨会,电子研讨会和材料科学设施,用于物理教育和研究,包括原子力显微镜,液氦再液化器,电路板制造商和3D打印机。SPMS综合体还拥有专门的研究中心,致力于光子学和材料物理学的重点研究。
二、研究领域
1.化学研究导论
化学和生物化学系的研究涉及广泛的主题。我们在合成化学,生物和药物化学,成像和传感方法,主要化学组和飞行化学方面特别强大。截至2017年,NTU 在Nature Index 中的化学研究中排名第13位,在全球学术机构中排名第13位。SPMS化学建筑我们坐落在世界上最好的化学建筑之一,配备了最先进的仪器,包括七个高场核磁共振(NMR)光谱仪,多个质谱仪,一个电子顺磁共振(ESR)光谱仪,一个共聚焦显微镜,多个透射电子显微镜(TEM),三个X射线衍射仪,以及一系列HPLC和GC。我们的本科生以及研究生研究人员都可以使用这些工具。
2.合成化学与催化
合成化学领域涉及新化学反应的开发和具有独特性质的目标分子的制备,例如生物活性天然产物,药物,聚合物和功能材料。合成化学研究的进展对于现代科学技术的许多领域至关重要,特别是化学和制药行业。
我们部门的合成化学家对以下主题进行研究:催化脂族CH键官能化;在没有贵金属有毒过渡金属的情况下进行环境良性分子转化(包括普遍存在的前排过渡金属催化剂,如铜,铁,镍和锰以及高性能有机催化剂);复合天然产物和功能材料的合成;生物质转化;生物分子功能化的方法;体内催化;用于连续制造的集成合成方法。
3.生物和药物化学
在这一化学领域,研究人员致力于开发新的化学合成方法,以解决药物和生物医学方面的挑战。我们在这一重要领域的研究包括以下主题:新型抗癌和抗病毒药物的设计和合成;生物分子的计算建模和模拟;合成和研究细胞表面结合的碳水化合物,例如唾液酸多糖和脂多糖;噬菌体展示和肽化学;合成具有生物学意义的天然产物。
4.成像和传感技术
对生物细胞及其成分进行成像的能力对于一系列科学和技术应用至关重要,包括研究蛋白质的功能和药物的作用方式。我们的研究人员正在开发强大的成像方法,改进目前基于荧光或生物发光有机染料的方法。
我们还在开发用于传感污染物,毒素,病原体和爆炸物等化学品的新技术。这一系列研究涉及开发新的化学过程,以便目标分子的存在触发可以使用电子或光学仪器精确测量的化学信号。这涉及了解一系列物理和化学过程,如溶解度,荧光猝灭,光漂白,蛋白质标记相互作用,标记细胞相互作用等。
具体研究课题包括:开发有效的多路复用标签;了解染料和等离子体纳米结构的特性;研究生物分子之间的认识;电化学传感;基于膜的生物传感。
5.化学元素
在元素周期表中所有元素块中,主要元素元素(s-和p-块)是最不相似的,具有比任何其他元素块更广泛的属性。主要元素范围从高反应性非金属元素(如氟)和半金属(如硅)到高活性碱金属(如钾)。基础化学的长期挑战之一是理解主要化学组的惊人和不可预测的性质。
我们有几个强大的团队参与主要的小组研究,特别关注含有主要元素元素的化合物的合成,并研究它们的反应模式,着眼于可能的应用。研究课题包括:主族化合物的新型键合和结构范例;主要有机金属化学及其应用;催化中的主要元素及其应用;主要元素在更广泛的背景下的影响(如杂环化学、碳类似物、低价化合物、过渡金属簇和不对称合成);电子应用(包括用于光电子学的分子材料,用于电子器件的新π电子系统,用于分子线和主族磁系统的主族过渡金属系统);新型材料(如光催化剂掺杂或石墨烯掺杂)。
6.飞秒
使用最先进的光谱技术,现在可以研究在超短时间尺度(超快现象)以及超小长度尺度(低至单个分子水平)发生的化学过程。化学和生物化学部的研究人员开发了用于研究基本光物理反应的敏感技术,这些反应控制着太阳能电池等设备的效率。我们还将单分子显微镜应用于药物相互作用的研究,以改进抗菌和抗癌治疗的设计。在超快现象领域,我们的研究人员开发了新的超快多维光谱技术,可用于观察传统方法无法检测到的现象(如瞬态吸收/泵浦探测光谱)。这些技术可用于研究光合作用过程中发生的超快能量转移过程,研究光伏和光电材料的超快动力学等。
7.磷催化剂
二氢吡啶是一类具有重要药物应用的化学品,包括用于治疗高血压的药物,以及在基本生物过程中起重要作用。新加坡南洋理工大学的Rei Kinjo研究小组最近发现了一种合成DHP的开创性程序,该程序便宜,高效且无毒。他们的研究结果发表在了美国化学会志在2018年一月。NHP-OTf催化吡啶向各种DHP化合物的转化。DHP在结构上非常类似于吡啶,有机化合物便宜且易于合成。然而,由于需要危险且昂贵的化学品,以前用于将吡啶转化为DHP的方法都是不经济的,结果DHP化合物由完全不同的起始材料制成。近年来,研究人员开发了将哌啶转化为DHP的催化剂,但这些催化剂含有有毒的重金属,如铑或钌,不能用于制造药物。
Kinjo教授和他的团队现已开发出一种无金属催化剂,用于将吡啶转化为各种DHP化合物。这种新型催化剂称为1,3,2-二氮杂苯并三氟磺酸盐(NHP-OTf),在室温下起作用,化学上使用起来很简单。这一发现意义重大,因为它为合成众多重要药物开辟了一条经济环保的途径。新催化剂NHP-OTf不仅因其潜在的应用而且其科学新颖性值得注意。“在磷化学的整个历史中,没有人利用这种特殊的化学基团双配位磷阳离子用于催化之前,”Kinjo教授说。“这确实是第一个例子,它可能是一个全新的磷催化领域的开端。”
8.燕窝的颜色
食用燕窝或燕窝是现如今最昂贵的亚洲美食之一,零售价约为每公斤5000新元。它已经在中医药方面开了一千多年,并形成了数十亿美元的年度贸易。它通常是白色的,但也有红色版本,称为“血巢”(血燕,xuĕyàn),它显着更昂贵,并被认为具有更多的药用价值。几个世纪以来,红色的原因一直是个难题。与流行的观点相反,红色的燕窝不含血红蛋白,血红蛋白是造成血液中红色的蛋白质。
现在,南洋理工大学物理与数学科学学院的化学家李秀英教授和他的博士生Eric Shim 解释了红燕窝的颜色。在2018年5月由美国化学学会出版的“农业和食品化学杂志”上发表的一篇论文中,研究人员报告说,红色是由活性氮物质的蒸气引起的,在鸟屋或洞穴的大气层中,与最初形成的白色燕窝。研究人员还指出,燕窝还会从蒸气中吸收亚硝酸盐和硝酸盐,这些物质可能致癌(致癌)。这可能意味着非白色燕窝对人体健康有害。有糖蛋白酪氨酸(顶部)的白色燕窝可以与含氮蒸气反应成为含有3-硝基酪氨酸的红色燕窝(底部)。
食用燕窝主要由一种叫做糖蛋白的物质组成。通过对白色和红色燕窝进行生化和光谱分析,李教授和他的学生指出了酪氨酸(糖蛋白中的氨基酸)所起的关键作用。红色燕窝含有酪氨酸,它与活性氮物质结合形成一种叫做3-硝基酪氨酸的新分子。在高浓度下,这种分子产生丰富的红色,而在较低浓度下,它产生黄色,金色和橙色的颜色,见于其他品种的燕窝产品。正如Lee教授所解释的那样,产生这种化学反应的活性氮物种的蒸气来自鸟粪。“红色的巢穴和一般有色的巢穴都是在维护不善的鸟屋里生产的,那里的地板上有很多鸟粪,”他说。“金丝燕以微小的飞虫为食,因此鸟类的粪便富含蛋白质或氮。细菌会分解鸟类粪便,产生活性氮物质的蒸气,从地板上升起并与上面燕窝中的酪氨酸反应。“
通过这项研究,红色燕窝的颜色难题已经得到解决,尽管大多数人没有想到。该研究还解释了为什么红色燕窝含有高浓度的亚硝酸盐和硝酸盐,已知会导致致癌化合物。相反,白色燕窝有能力清除当我们的身体有疾病相关的硝化应激时产生的活性氮物种,例如慢性炎症,动脉粥样硬化等。这可能是消耗白色燕窝的好处之一。可能的好处。
9.用于固氮的纳米结构
氮占我们周围空气的78%,是一种天然丰富的原料,可用于生产燃料和肥料的氨。20世纪化学的重大发明之一是Haber-Bosch的“固氮”工艺,或将氮转化为氨。Haber-Bosch工艺是目前人体中大约一半氮的原因,但由于它是在非常高的温度和压力下进行的,因此它消耗的能量高达世界总能量输出的2%。研究组凌邢已开发了无哈柏法的极端条件下有效地执行固氮的新方法。他们的方法是将固氮催化剂与称为金属有机骨架的纳米结构相结合。通过调节氮和水分子进入催化剂表面的途径,MOF允许在室温和大气压下以常规电化学方法的效率超过18倍的氮氨转化率发生。
将来,这种方法可用于直接从大气中直接采集化学燃料或其他氨基化学品。如果成功,这些发展可能会彻底改变目前的工业化学制造方法,这些方法往往是不可持续和污染的。凌教授和她的合作者推测这种方法甚至可以用来从大气中提取温室气体,以缓解全球气候变化。
10.数学研究导论
二十一世纪为数学科学带来了巨大的机会。现如今、科学、工程、医学、商业、国防和社会科学的许多领域都依赖于从数学科学领域借鉴的思想,技术和技能。它们包括复杂系统的建模和分析,计算机模拟和大量数据分析。数学科学在我们的日常生活中发挥着越来越重要的作用,可以开展互联网搜索,网上银行,计算机动画,天气预报,医学成像,商业和军事优化,库存控制和金融风险分析等活动。由于其基本性质,数学在任何一所主要大学的教育使命中发挥着独特的核心作用。这是我们的特殊责任,而且作为一个部门,我们一直努力完成这项任务。
我们为我们高度活跃的研究人员感到自豪,这使我们能够成功地吸引有竞争力的研究经费。我们教师的研究成果已在着名期刊上发表,并定期邀请他们在高级会议上发言。这有助于在数学科学部培养充满活力的研究文化,吸引了源源不断的访客,呼吁我们的部门并寻求与我们的教员合作。我们还定期组织研讨会和会议。数学科学系拥有超过35名全职教师,15名访问/兼职/副教职员工,30 多名博士后和研究生研究员,以及30多名研究生。
我们在纯数学和应用数学研究的许多领域都非常活跃,包括:纯数学数论,几何,代数,分析,拓扑,随机矩阵理论,概率;编码和密码学代数编码理论,网络编码,密码设计,安全多方计算,密码分析;计算数学算法设计,通信复杂性,量子计算,计算模型,算法信息论,可计算性理论;应用数学和统计学运筹学优化,多尺度建模方法,多变量分析,随机分析,金融数学,生物学应用。
11.超材料逻辑门
光子超材料是设计用于操纵光流的人造结构,通常以使用天然材料无法实现的方式。他们最有希望的应用之一是光学计算,其中逻辑操作是用光执行的。用于此应用和其他应用的超材料必须是“可重新配置的”,这意味着必须能够根据需要改变其光学特性。由新加坡南洋理工大学的Ranjan Singh领导的团队开发出了第一个能够在多种配置之间轻松切换的超材料设备。在Nature Communications上发表的2018年10月的一篇论文中,该团队表明他们的超材料甚至可以用于实现逻辑门,例如非AND和异或。超材料基于微机电系统,包含微米尺寸的机械臂,当提供电压时弯曲。
虽然之前已经证明了可重构的超材料,但研究人员一直在努力设计超材料以在两种以上的配置之间切换。这种切换需要对超材料中的不同组件之间的复杂电磁相互作用进行极其精细的控制。新的基于MEMS的设备通过采用Fano共振解决了这一难题,这种现象允许存储在电磁振荡器中的能量随着振荡器的性质的调整而变化很大。
超材料包含许多副本的一对干草叉形铝天线,沉积在硅芯片上。干草叉的臂长仅25微米,充当微小的电磁振荡器,在太赫兹频率下谐振(机场的毫米波安全扫描仪使用的频率相同)。当向每个干草叉提供电压时,它会从硅表面弯曲并抬起,从而改变两个干草叉之间的微妙Fano共振。因此,不同的电压组合显着改变了器件散射太赫兹频率光的效率。为了创建逻辑门,团队让两个干草叉上的电压用作逻辑输入位(00,01,10或11),并设计超材料,使得通过器件传输的光量对应于所需的逻辑门的输出。例如,在XOR门中,当输入为01或10时输出为1(高传输),当输入为00或11时输出为0(低传输)。
“这是一个新颖可靠的超材料设备平台,”南大的博士生Manukumara Manjappa解释说,他是Nature Communications论文的第一作者。“在未来,我们设想使用它来开发基于红外和太赫兹频率的光的存储器件。超材料可以作为随机存取的存储器,比现有的电子计算机更快地执行多通道数据处理。
12.合成量子材料
量子材料,例如石墨烯,是从下面的原子的特殊量子特征得到它们的特性的材料。尽管它们具有巨大的技术前景,但由于原子排列的可能方式非常多,新量子材料的开发往往涉及艰苦的反复试验。在Nature Nanotechnology的一篇新的Perspective文章中,Justin Song(新加坡南洋理工大学)和他的合着者美国加州大学河滨分校设想了一种更有针对性的方法来设计量子材料。他们主张使用范德瓦尔斯异质结构,它是通过堆叠原子级薄的二维薄片而产生的,如下图左图所示。
这样的堆栈是令人兴奋的,因为它们可以呈现出现在单个2D薄片中的“紧急”特征。这种现象类似于日常观察,即当两个网格相互重叠时,会出现催眠的“莫尔图案”,如图的右图所示。Song和Gabor在vdW异质结构和光子超材料之间进行了类比,光学物理中使用的人造材料创造了隐形装置,超级透镜和其他奇特装置。“就像亚波长图案模塑光学超材料中的光流一样,vdW叠层的纳米级特征可以改变电子流过量子超材料的方式,”Song解释道。
尽管光学超材料在过去20年中经历了广泛的研究,但vdW异质结构的特殊性质才刚刚开始受到研究人员的重视。将2D材料布置成堆叠的多种方式为研究人员提供了一个简单的“工具箱”来设计新的材料属性。在他们的文章中,Song和Gabor指出量子超材料可以比它们的光学超材料对应物开辟更多的可能性,因为电子是带电的并且可以彼此强烈相互作用,而光子不相互作用。“最近vdW异质结构中不寻常的量子行为的例子已经出现在该领域的不同部分,”宋说,他指出了世界各地研究小组对vdW异构结构的最新结果。“我们想知道是否可能存在一些广泛的统一框架,或者是否可以为量子工程制定一套策略。”他们设想电子之间的工程相互作用产生集体电子现象,例如传统材料中没有的新形式的超导电性。
13.钙钛矿LED
在由钙钛矿材料的发光二极管的效率记录已被国际化的团队,其中包括研究小组取得启华熊教授在物理和数学科学学院在新加坡南洋理工大学。该论文集于2018年10月出版的“ 自然 ”杂志上发表,其中包括华侨大学(中国)和多伦多大学(加拿大)的研究人员,宣布了发光二极管效率达到20%的新世界纪录。由卤化钙钛矿材料制成。卤化钙钛矿是一类廉价且天然丰富的材料,有望在下一代LED,太阳能电池和其他电子设备中取代传统半导体。新的20%效率记录非常重要,因为这意味着钙钛矿LED的效率首次与商用常规LED,有机LED和量子点LED相当。
由诸如砷化镓之类的半导体材料制成的常规LED因其高效率而得到广泛使用。这种效率(定义为成功转换为光的电功率的比例)对于商用LED而言为15%至25%。相比之下,白炽灯泡的效率仅为2%左右。然而,近年来,科学家们开始研究用称为卤化钙钛矿的材料取代传统半导体。基于钙钛矿的器件的一个主要吸引力在于它们可以通过诸如喷墨印刷或旋涂的方法制造,这些方法比标准半导体制造技术便宜得多。
熊启华教授,该论文的主要作者之一。研究人员发现,通过在制造过程中混合精心挑选的添加剂,可以去除全无机钙钛矿原子结构中的许多缺陷。由于这些缺陷浪费地散布在材料中流动的电流,因此去除它们导致发光效率的显着跳跃。该团队发现效率超过20%,而早期钙钛矿LED的最高效率为12%至14%。“钙钛矿LED的制造成本要便宜得多,” 该论文的主要作者之一熊教授解释道。“我们实现了与商用LED相媲美的效率这一事实非常令人鼓舞。它标志着未来用于照明和显示屏的更便宜的LED迈出了一步。”
14.量子力学
发布在自然通讯,副教授大卫Wilkowski教授和他的同事就实现的一个量子力学的版本报告,傅科摆,采用冷原子云。福柯钟摆是一个众所周知的示范实验,经常在世界各地的科学中心展出。当摆锤自由摆动时,由于地球自转产生的几何效应,其振荡平面在一天中会旋转。在量子力学中,类似的旋转可以在描述量子系统的“状态向量”中发生,但有一个关键区别:在某些情况下,量子旋转可以是“非阿贝尔”,这意味着它还取决于系统的起点。这是一种本质上的量子效应,在经典物理学中没有对应物。
Wilkowski副教授和他的同事们在大约10,000个锶原子(87 Sr)的云上进行了实验,冷却到接近绝对零度(约-273°C)。他们使用三种激光的组合来操纵原子的“旋转”,产生类似于经典福柯钟摆中地球自转的效果。然后,他们观察到原子的自旋经历了非阿贝尔几何变换。这种对原子自旋的微妙几何控制在容错量子计算中具有很好的应用前景。
15.Plasmons的内部结构
金属中的电子可以共同振荡以产生称为“ 等离子体 ” 的波。等离子体的性质已经在许多科学和技术领域得到应用,从生物成像到光探测。最值得注意的是,它们可用于压缩和操纵纳米长度尺度的光,远低于自由空间中光波的波长。然而,等离子体本身长期以来被认为是相对简单的波浪状物体,缺乏任何有趣的内部特征。Justin Song教授小组的理论工作挑战了这一假设。在2018年4月发表在Physical Review X上的一篇论文中,研究小组报告说,普通金属中的等离子体含有可能影响其运动的隐藏内部结构。
就像鸭子的疯狂划桨隐藏在水面之下,当它在池塘中滑行时,一个看似简单波浪的等离子体实际上由旋转的微观电流组成,形成各种错综复杂的图案。研究人员表明,这些模式可以用来改变等离子体的轨迹; 例如,从表面反射的等离子体经历可以通过磁场控制的平行移位。在未来,这一基本理论发现可能会导致用于控制光学器件中的等离子体的新技术。
16.蟑螂如何感知磁场
某些动物可以感知磁场,甚至可以使用磁场进行导航。然而,这种能力的潜在机制仍然是一个难题。其中一个主要的科学假设是这些动物利用含有可旋转磁性纳米颗粒的特殊细胞,类似于微小的罗盘。Rainer Dumke 教授和Tomasz Paterek 教授的研究小组发起了一项调查这一现象的合作。通过创建一个定制的,高灵敏度的原子磁力计,他们能够对活体昆虫中的磁性粒子动力学进行首次研究:American Cockroach
他们发现纳米粒子在活体和死亡动物中的表现非常不同。他们的研究结果缩小了蟑螂体中磁性纳米粒子的可能性范围,但也暗示这些纳米粒子不是蟑螂的磁场感应能力的原因。这些发现发表在2018年3月的“ 科学报告 ”杂志上,是动物感知磁场的长期难题中的重要一步包括人类是否能够这样做的有趣问题。该研究课题的进展可能会在未来基于生物学原理的磁传感器中得到应用。
推荐阅读: