开普勒三大定律是什么,有什么重要的意义?想知道的小伙伴看过来,下面由出国留学网小编为你精心准备了“开普勒三大定律的内容及意义”仅供参考,持续关注本站将可以持续获取更多的内容!
开普勒三大定律的内容
开普勒在1609年发表了关于行星运动的两条定律,一条是开普勒第一定律,也叫轨道定律,内容是所有的行星绕太阳运动的轨道都是椭圆的,太阳处在椭圆的一个焦点上。
开普勒第二定律,也叫面积定律,对于任何一个行星来说,它与太阳的连线在相等的时间扫过相等的面积。
用公式表示为:SAB=SCD=SEK
到了1619年时,开普勒又发现了第三条定律,也就是开普勒第三定律,也称为周期定律,内容为所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
开普勒不仅为哥白尼的日心说找到了数量关系,更找到了物理上的依存关系,使天文学假说更加的符合自然界本身的真实。行星运动三大定律的发现为经典天文学奠定了基石,并导致数十年后万有引力定律的发现。
开普勒全名约翰尼斯开普勒,出生于1571年,死于1630年,开普勒是德国近代著名的天文学家,数学家,物理学家和哲学家。开普勒以数学的和谐性探索宇宙,在天文学方面作出了巨大的贡献,开普勒是继哥白尼之后第一个站出来捍卫太阳中心说,并在天文学方面有突破性的成就的人物,被后世的科学家称为天上的立法者。
开普勒是哥白尼日心说的忠实信徒,为此开普勒做了不少天文测量,并在天文学方面作出了许多积极的贡献,1604年他观察到了银河系内的一颗超新星,历史上称它为开普勒新星,1607年,开普勒观测了一颗大慧星,就是后来的哈雷慧星,到了1609年,开普勒发表了多项有关行星运动的理论,当中包括了开普勒第一定律和开普勒第二定律,1618年,开普勒再次发表了有关行星运动的开普勒第三定律的论文。
开普勒三大定律的意义
开普勒的三定律是天文学的又一次革命,它彻底摧毁了托勒密繁杂的本轮宇宙体系,完善和简化了哥白尼的日心宇宙体系。开普勒对天文学最大的贡献在于他试图建立天体动力学,从物理基础上解释太阳系结构的动力学原因。虽然他提出有关太阳发出的磁力驱使行星作轨道运动的观点是错误的。但它对后人寻找出太阳系结构的奥秘具有重大的启发意义,为经典力学的建立、牛顿的万有引力定律的发现,都作出重要的提示。
首先,开普勒定律在科学思想上表现出无比勇敢的创造精神。远在哥白尼创立日心宇宙体系之前,许多学者对于天动地静的观念就提出过不同见解。但对天体遵循完美的均匀圆周运动这一观念,从未有人敢怀疑。开普勒却毅然否定了它。这是个非常大胆的创见。哥白尼知道几个圆合并起来就可以产生椭圆,但他从来没有用椭圆来描述过天体的轨道。正如开普勒所说,“哥白尼没有觉察到他伸手可得的财富”。
其次,开普勒定律彻底摧毁了托勒密的本轮系,把哥白尼体系从本轮的桎梏下解放出来,为它带来充分的完整和严谨。哥白尼抛弃古希腊人的一个先入之见,即天与地的本质差别,获得一个简单得多的体系。但它仍须用三十几个圆周来解释天体的表观运动。开普勒却找到最简单的世界体系,只用七个椭圆说就全部解决了。从此,不须再借助任何本轮和偏心圆就能简单而精确地推算行星的运动。
第三,开普勒定律使人们对行星运动的认识得到明晰概念。它证明行星世界是一个匀称的(即开普勒所说的“和谐”)系统。这个系统的中心天体是太阳,受来自太阳的某种统一力量所支配。太阳位于每个行星轨道的焦点之一。行星公转周期决定于各个行星与太阳的距离,与质量无关。而在哥白尼体系中,太阳虽然居于宇宙“中心”,却并不扮演这个角色,因为没有一个行星的轨道中心是同太阳相重合的。
拓展阅读:开普勒简介
开普勒于1571年12月27日生于德国的符腾堡。开普勒幼年体弱多病,12岁时入修道院学习。1578年进入蒂宾根大学,在校中遇到秘密宣传哥白尼学说的天文学教授麦斯特林,在他的影响下,很快成为哥白尼学说的忠实维护者。1591年获文学硕士学位,被聘请到格拉茨新教神学院担任教师。1594年他得到大学的有力推荐,中止了神学课程,去奥地利格拉茨的路德派高级中学任数学教师。在那里,他开始研究天文学。1596年出版《宇宙的神秘》一书而受到第谷的常识,应邀到布拉格附近的天文台做研究工作。1600年,来到布拉格成为第谷的助手。次年,第谷去世,开普勒成为第谷事业的继承人。
开普勒视力不佳,但做了不少天文观测。1604年9月30日在蛇夫座附近出现一颗新星,最亮时比木星还亮。开普勒对这颗新星进行了十七个月的观测并发表了观测结果。历史上称它为开普勒新星(现在知道,这是一颗银河系内的超新星)。1607年,他观测了一颗大彗星,这就是后来的哈雷彗星。开普勒对光学很有研究。1604年发表《对威蒂略的补充,天文光学说明》。1611年出版《光学》一书。这是一本阐述近代望远镜理论的著作。他把伽利略式望远镜的凹透镜的目镜改成用小凸透镜。这种望远镜被称为开普勒望远镜。开普勒还发现大气折射的近似定律,用很简单的方法计算大气折射,并且说明在天顶(不像第谷所相信的在高度45°)大气折射才为零。他最先认为大气有重量,并且正确地说明月全食时月亮呈红色是由于有一部分太阳光经过地球大气折射后投射到月亮上而造成的。
开普勒用很长的时间对第谷遗留下来的观测资料进行分析。起先他仍按传统观念,认为行星作匀速圆周运动。但是经过反覆推算发现,对火星来说,无论按哥白尼的方法,还是按托勒密或第谷的方法,都不能算出同第谷的观测相合的结果。虽然黄经误差最大只有8′,但是他坚信观测的结果。于是他想到,火星可能不是作匀速圆周运动的。他改用各种不同的几何曲线来表示火星的运动轨迹,终于发现了“火星沿椭圆轨道绕太阳运行,太阳处于焦点之一的位置”这一定律。这个发现把哥白尼学说向前推进了一大步。用开普勒本人的话说:“就凭这8′差异,引起了天文学的全部革新!”接著他又发现,虽然火星运行的速度是不均匀的(最快时是在近日点,最慢时在远日点),但是,从任何一点开始,在单位时间内,向径扫过的面积却是不变的。这样,就得出了关于行星运动的第二条定律:“行星的向径,在相等时间内扫过相等的面积。”这两条定律,刊布于1609年出版的《新天文学》一书内。书中又指出,这两条定律也适用于其他行星和月球的运动。
1612年,开普勒发现了关于行星运动的第三条定律:“行星公转周期的平方等于轨道半长轴的立方。”这一结果发表在1619年出版的《宇宙谐和论》中。行星运动三定律的发现为经典天文学奠定了基石,并导致了数十年后万有引力定律的发现。
1618-1621年,他出版了《哥白尼天文学概要》。书中叙述他对宇宙结构和大小的观点。在1619-1620年期间出版的《彗星论》一书中,他指出彗尾总是背著太阳,是因为太阳光排斥彗头的物质所造成。这是在距今两个半世纪以前预言了辐射压力的存在。
开普勒当时最受到人们钦佩的工作,是1627年出版的《鲁道夫星表》。这是根据他的行星运动定律和第谷的观测资料编制的。根据此表可以知道行星的位置,其精确度比以前的各种星表都高,直到十八世纪中叶,它一直被视为天文学上的标准星表。他于1629年出版《稀奇的1631年天象》一书,预言1631年11月7日水星凌日现象,12月6日金星也将凌日。果然在预言的日期,巴黎的伽桑狄观测到水星通过日面。这是最早的水星凌日观测。至于那次金星凌日,因发生在夜间,在西欧看不到。
开普勒对天文学作出了卓越的贡献。然而,他的一生却是在极端艰难贫困的条件下度过的。1630年,他有几个月得不到薪俸,经济困难,不得不亲自前往雷根斯堡索取。到那里后他突然发烧,1630年11月15日,开普勒在一家客栈里悄悄地离开了世界。他死时,除一些书籍和手稿之外,身上仅剩下了7分尼(1马克等于100分尼)。