教案是为课堂所准备的,为了课堂上把知识内容更好地传授给学生。下面是由出国留学网小编为大家整理的“初中教案模板范文数学2021”,仅供参考,欢迎大家阅读。
初中教案模板范文数学2021【一】
一、教学目标
1、了解公式的意义,使学生能用公式解决简单的实际问题;
2、初步培养学生观察、分析及概括的能力;
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
二、重难点
(一)教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
(二)重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的.辨证思想。
四、教法建议
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
五、教学目标
(一)知识教学点
1、使学生能利用公式解决简单的实际问题。
2、使学生理解公式与代数式的关系。
(二)能力训练点
1、利用数学公式解决实际问题的能力。
2、利用已知的公式推导新公式的能力。
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践。
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
六、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式。
初中教案模板范文数学2021【二】
一、教学目标
(一)知识与技能
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感、态度与价值观
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
(一)教学重点
数轴的三要素,用数轴上的点表示有理数。
(二)教学难点
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
初中教案模板范文数学2021【三】
一、教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
三、课堂教学过程设计
(一)从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题。
例1 某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3。
答:某数为3。
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4。
解之,得x=3。
答:某数为3。
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出 15%后,还剩余42500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000。
答:原来有 50 000千克面粉。
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程: 2x=10,
所以 x=5。
其苹果数为 3× 5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得 )
(三)课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元。求1978年末的储蓄存款。
3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数。
(四)师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆。
(五)作业
1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。