学会用分析的方法来思考数学问题

2012-05-15 10:56:20 中考数学

     数学学习有自身的规律,许多数学问题的解决方法也是有规律可寻的。作为学业考试,主要考查学生对初中数学中的一些基本概念、基本方法的掌握,也即主要考查一些数学的通性通法,因此平时切忌不动脑筋,靠“多”做题目,达到掌握的目的。

  多做题目固然有好处,可以做到见多识广,但由于学生学习的时间是个有限的常数,而且在这有限的时间内还要学习其他许多知识,因此单靠盲目地多做练习,达到熟能生巧的程度,看来这条路是行不通的,我们要考虑的是如何提高学习的效率,为此我们一定要注意经常整理解决常见问题的基本方法。比如对于几何的证明题,我们要学会用分析的方法来思考问题:

  已知,AD是△ABC的角平分线,BD是BE与BA的比例中项,求证:AD是AE与AC的比例中项。

  分析:根据已知条件可以知道,BD2=BE·BA,进一步可以证得△BDE∽△BAD,得到一些对应角相等。而要证明AD是AE与AC的比例中项,即要证明AD2=AE·AC。要证明等积式,就是要证明比例式AEAD=ADAC。要证明比例式,可以考虑利用平行线分线段成比例定理或利用相似三角形的性质。根据本题的条件,就是要证明这四条线段所在的三角形相似,即△ADE∽△ACD。证明三角形相似需要两个条件,由于∠DAE=∠CAD,因此只需再找一对角相等或夹这个角的两边对应成比例,首先考虑的是证明两个角相等,不行时再考虑证明夹这个角的两边对应成比例,如∠AED=∠ADC。结合条件,可以证出∠BED=∠BDA,所以就可得到∠AED=∠ADC,从而证得结果。

  像这种思考问题的方法,隐含着数学的化归思想。

  在熟练掌握数学基本概念的前提下,解决较难问题时,我们经常采用把问题逐步转化成我们熟悉的、已经解决的问题,最终解决新的问题。因此我们要经常总结一些常见问题所采用的常见办法,如证明两个角相等,常见的有哪些方法?证明两条边相等,常见的有哪些方法?如何证明直线与圆相切?如何求函数的解析式?二次函数的图象与x轴的交点的横坐标与相应的一元二次方程的根有什么关系?等等。然后再通过适量的练习,达到熟练掌握方法的目的。

  数学思想是数学的精髓,对数学思想方法的考查是中考的一个重要方面。

  因此在数学学习中要充分注重对数学思想的理解。除了上面提到的化归思想外,初中数学中,我们还学习过字母表示数思想、方程思想、函数思想、分解组合思想、数形结合思想、分类讨论思想、配方法、换元法、待定系数法等等。从数学思想方法上来认识解决问题的方法,那么就更能提高自己的能力。

  最后,学生还要注意改善学习方式,提高学习效率。

  学生一般都有这样一个习惯,考试结束后,或者作业做完后喜欢交流答案,这表明学生急需想知道自己的劳动成果,这是一件好事,但如果再进一步交流一下解题的方法,学习效率会更高。因为数学题目是大量的,一般学生是做不完的,不少题目有许多不同的解法,比如两位学生的答案一致,但解决问题的方法可能不一样,可能一种是一般的基本的方法,而另一种是根据这个问题的特征采用的特殊的方法,各有千秋,通过交流,取长补短,那么就能共同提高,从而也提高了自己的学习效率。



中考政策 中考状元 中考饮食 中考备考辅导 中考复习资料
分享
qqQQ
qzoneQQ空间
weibo微博
《学会用分析的方法来思考数学问题.doc》
将本文的Word文档下载,方便收藏和打印
下载文档

热门关注

初一上册数学知识点是什么

初一上册数学知识点

初一下期有哪些数学知识点

初一下期数学知识点

初一上册数学知识点总结

初一上册数学

考试作文写作技巧指导

作文考试写作技巧

初中学好数学有哪些好习惯

初中学数学的好习惯

中考数学问题的解答技巧总结

中考数学问题解答技巧

如何学好初中数学的方法

初中数学

2020初中数学的攻略方法

初中数学攻略方法

初中有哪些学习数学的方法

初中学习数学方法

初中数学的解题方法和技巧总结

初中数学解题方法
付费下载
付费后无需验证码即可下载
限时特价:4.99元/篇 原价10元
微信支付

免费下载仅需3秒

1、微信搜索“月亮说故事点击复制

2、进入公众号免费获取验证码

3、输入验证码确认 即可复制

4、已关注用户回复“复制”即可获取验证码

微信支付中,请勿关闭窗口
微信支付中,请勿关闭窗口
×
温馨提示
支付成功,请下载文档
咨询客服
×
常见问题
  • 1、支付成功后,为何无法下载文档?
    付费后下载不了,请核对下微信账单信息,确保付费成功;已付费成功了还是下载不了,有可能是浏览器兼容性问题。
  • 2、付费后能否更换浏览器或者清理浏览器缓存后下载?
    更换浏览器或者清理浏览器缓存会导致下载不成功,请不要更换浏览器和清理浏览器缓存。
  • 3、如何联系客服?
    如已按照上面所说方法进行操作,还是无法复制文章,请及时联系客服解决。客服微信:ADlx86
    添加时请备注“文档下载”,客服在线时间为周一至周五9:00-12:30 14:00-18:30 周六9:00-12:30

     数学学习有自身的规律,许多数学问题的解决方法也是有规律可寻的。作为学业考试,主要考查学生对初中数学中的一些基本概念、基本方法的掌握,也即主要考查一些数学的通性通法,因此平时切忌不动脑筋,靠“多”做题目,达到掌握的目的。

  多做题目固然有好处,可以做到见多识广,但由于学生学习的时间是个有限的常数,而且在这有限的时间内还要学习其他许多知识,因此单靠盲目地多做练习,达到熟能生巧的程度,看来这条路是行不通的,我们要考虑的是如何提高学习的效率,为此我们一定要注意经常整理解决常见问题的基本方法。比如对于几何的证明题,我们要学会用分析的方法来思考问题:

  已知,AD是△ABC的角平分线,BD是BE与BA的比例中项,求证:AD是AE与AC的比例中项。

  分析:根据已知条件可以知道,BD2=BE·BA,进一步可以证得△BDE∽△BAD,得到一些对应角相等。而要证明AD是AE与AC的比例中项,即要证明AD2=AE·AC。要证明等积式,就是要证明比例式AEAD=ADAC。要证明比例式,可以考虑利用平行线分线段成比例定理或利用相似三角形的性质。根据本题的条件,就是要证明这四条线段所在的三角形相似,即△ADE∽△ACD。证明三角形相似需要两个条件,由于∠DAE=∠CAD,因此只需再找一对角相等或夹这个角的两边对应成比例,首先考虑的是证明两个角相等,不行时再考虑证明夹这个角的两边对应成比例,如∠AED=∠ADC。结合条件,可以证出∠BED=∠BDA,所以就可得到∠AED=∠ADC,从而证得结果。

  像这种思考问题的方法,隐含着数学的化归思想。

  在熟练掌握数学基本概念的前提下,解决较难问题时,我们经常采用把问题逐步转化成我们熟悉的、已经解决的问题,最终解决新的问题。因此我们要经常总结一些常见问题所采用的常见办法,如证明两个角相等,常见的有哪些方法?证明两条边相等,常见的有哪些方法?如何证明直线与圆相切?如何求函数的解析式?二次函数的图象与x轴的交点的横坐标与相应的一元二次方程的根有什么关系?等等。然后再通过适量的练习,达到熟练掌握方法的目的。

  数学思想是数学的精髓,对数学思想方法的考查是中考的一个重要方面。

  因此在数学学习中要充分注重对数学思想的理解。除了上面提到的化归思想外,初中数学中,我们还学习过字母表示数思想、方程思想、函数思想、分解组合思想、数形结合思想、分类讨论思想、配方法、换元法、待定系数法等等。从数学思想方法上来认识解决问题的方法,那么就更能提高自己的能力。

  最后,学生还要注意改善学习方式,提高学习效率。

  学生一般都有这样一个习惯,考试结束后,或者作业做完后喜欢交流答案,这表明学生急需想知道自己的劳动成果,这是一件好事,但如果再进一步交流一下解题的方法,学习效率会更高。因为数学题目是大量的,一般学生是做不完的,不少题目有许多不同的解法,比如两位学生的答案一致,但解决问题的方法可能不一样,可能一种是一般的基本的方法,而另一种是根据这个问题的特征采用的特殊的方法,各有千秋,通过交流,取长补短,那么就能共同提高,从而也提高了自己的学习效率。



中考政策 中考状元 中考饮食 中考备考辅导 中考复习资料
一键复制全文