这篇文章是我们为您准备的有关“乘法结合律课件”的最新资讯。在教学过程中,老师将会根据主教材内容整理成教案课件,而现在正是编写教案课件的时候了。编写教案需要注重知识与能力的结合与提升,因此希望您能认真阅读本文。
乘法结合律课件 篇1
教学目标:
1、理解、掌握乘法结合律(用字母表示)
2、学会运用乘法结合律和交换律进行简便计算。
教学过程:
(一)定律教学
1、感知乘法结合律。
出示:求3、25和4的积。
学生审题后口答算式,并互相补充,得到左边部分。
32543(254)
34253(425)
254325(43)
253425(34)
42534(253)
43254(325)
接着问:这几题都是从左往右计算,那么可以先算后面的乘,再与第一个数相乘吗?结果会相等吗?第一题示范列出,余下的题目由学生独立完成,然后四人小组分工计算验证,看结果是否相等。
最后总结:你发现了什么?(三个数相乘,可以从左往右计算,也可以把后两个数相乘,再与第一数相乘。)
2、验证与巩固
(1)验证
教学例2,学生读题后根据题意列式计算。完成后校对思路、式子与答案,把结果连成等式:(310)2=3(102)
(2)总结。自学课本第12页(2),先计算,再看每组的两个算式有什么关系?
完成后请学生用自己的话总结,然后给书本中的定律填空,齐读后再给出a、b、c三个字母,要求学生概括出定律,
(3)巩固。
练一练第1题,应用乘法交换律和结合律,在横线上填
入适当的数。
请学生填空,并口头说出依据,校对时第(3)(4)小题重点讨论:第(3)题比较5(780)、7(580)哪重填法简便?第(4)题(8125)(1416)与其它填法进行比较,说一说哪一种简便,简便在哪里?
(二)简便计算
1、教学例3:25134
自学书本例3,思考并回答旁注,然后补充完成。
2、课本试一试用简便方法计算。
学生独立完成,然后校对。
(三)巩固练习
1、巩固定律。
练一练第2题,判断各题是否正确,把错误的改过来。
由学生独立判断,然后四人小组讨论,快的组可以订正。
最后指名学生做出判断,对的说明理由,错的指出错误,并订正。
总结提问:运用乘法交换律和乘法结合律进行简便计算时,什么变了,什么没有变?
2、简便计算练习。
练一练第3题,用简便方法计算。独立完成后校对讲
评。
(四)总结
今天这节课学了什么内容?学生回答后教师总结。
(五)作业
《作业本》[10]
乘法结合律课件 篇2
【教学目标】
1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。
2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
3、会用乘法分配律进行一些简便计算。
【教学重点】
自主发现乘法分配律,并能用字母表示。
【教学难点】
发现并让学生自己归纳乘法分配律
【课前准备】
口算练习题,幻灯片
【教学过程】
一、新知导入
师:请同学们进行口算练习(指名回答)
5×2=25×2=
5×4=25×4=
15×2=16×5=
15×4=45×2=
75×4=125×8=
师:请同学们观察这一组口算练习有什么特点。
生:他们的结果都是整十整百整千的数。
师:同学们的观察真仔细,像这样2个数相乘结果是整十整百整千的数,都是好朋友,这些好朋友今后都会帮助我们来运算,我们都应记住。这里特别的请大家记住三对好朋友:5×2、25×4、125×8。
师:上节课,我们进行了有趣的探索活动,发现了很多奇妙的规律,在我们的数学运算中,还有很多规律,我们这节课就继续探索和乘法有关的知识,相信大家一定会有新的发现。(板书:探索与发现)
二、新知探索
师:同学们玩过玩具积木吗?
生:玩过。
师:你会用积木搭些什么呢?
学生回答自己用积木搭过的物体。
师:老师也用小正方体积木搭了一个立体图形。大家一起来看看。(课件出示书上的情境图)
师:你能看出老师搭的是什么形状吗?
生1:正方体。
生2:不对,是长方体。
师:真好,你们观察得真仔细!那么这个长方体是由多少个小正方体组成的呢?你们是怎样计算得到这个答案的呢?请同学们每个人动笔算一算。
(师将学生的多种算法板书在黑板上,板书:从上面看:3×5×4
从前面看:5×4×3
从侧面看:3×4×5)
师:由于同学们观察角度的不同,所以列出的算式也不相同,现在请同学们比较一下,上面的第一和第二这2个算式有什么相同点和不同点?
生:相同点都是3、4、5三个数字相同,不同点是数字的位置不同。
师:数字位置不同运算顺序就不同,那么大家想想,如果三个数字的位置不变,你有什么办法还按照刚才同学的运算顺序进行运算吗?(不亦动3、4、5的位置,能不能先算5×4)
生:用小括号把5×4括起来。
(板书:(5×4)×3=3×(5×4))
师:请同学们计算一下这2个算式的结果。(学生计算发现结果都是60)
师:我们以往将三个数连乘都是先把前两个数相乘,再乘第三个数,而现在我们也可以把后两个数先相乘,再和第一个数相乘,它们的结果相同。这是一种巧合呢?还是一个规律呢?谁能举出类似这样的三个数连乘的例子?(找2-3个学生举例子,例子板书在黑板上)
师:同学们,你能举例了吗?现在请每个人在练习本上举一个例子,然后在小组内汇报你举的例子。(提示:如果找到比较大的数,可以借助计算器)
(学生汇报之后教师板书学生的举例,3、4个即可)
师:从刚才大家的举例来看,每一组的结果都是相同的。同学们,你能用自己的语言说说这些等式的共同点吗?
师:同学们概括的真好,这就是乘法结合律。如果用a,b,c表示三个数,你能总结出发现的规律吗?(如果同学们概括不出来,可以用字母的方法表示,并提示学生以后用字母这种表示方法表示其他的规律,更加便捷)
师:现在请同桌2人对照这字母的表达方式说一说什么是乘法结合律。
师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?
在计算搭长方体所需要的小正方体个数过程中发现了三个数连成,顺序不同,结果却相同这一问题(板书:发现问题)于是我们从中猜想是不是有什么规律(板书:提出假设)经过举例验证(板书:举例验证)我们总结出乘法的结合律(板书:概括规律)
以后,我们可以用这样的方法去发现更多的规律。
三、新知应用
(1)练习
(42×4)×5=42×(4×□)
(35×2)×5=35×(□×5)
(28×2)×5=
(47×25)×4=47×(□×□)
师:这里面出现了我们一上课提到的三对好朋友,大家发现了吗?(再次提醒学生注意5×2、25×4、125×8这三组数)
(2)课件出示:
38×25×4
49×125×8
(带领学生做第一道练习题,在黑板上板书过程,指导学生观察数字以及板书格式,体会简便的必要性。然后再让学生在练习本上做第二道习题。)
(3)让学生观察一开始板书的三组式子:3×5×4
5×4×3
3×5×4
师:观察第一组和第三组式子,有什么发现?
生:5×4和5×4位置改变了。
师:没错,那么这2个式子的结果相同吗?
生:相同
师;你能再举几个类似的例子吗(学生举例)
师:其实这也是数学中的一个重要运算定律
乘法结合律课件 篇3
教学内容:乘法结合律和简便算法--教材第60-61页例3-5,做一做题目及练习十三2-7题。
教学目的:使学生理解并掌握乘法结合律,能够应用乘法交换律和结合律进行简便计算,培养学生逻辑思维能力。
教学过程:
一、复习
1.教师出示应用题一个养蜂组养了105箱蜜蜂,平均每箱蜜蜂每年可以产蜂蜜76千克。这个养蜂组一年生产蜂蜜大约多少千克?
让学生先默读题目,然后在自己的练习本上解答。学生做完以后,教师提问:
你是怎样做的?
你为什么用乘法计算,而不用加法计算呢?
教师肯定学生的回答,再明确指出:这道题实际求的是105个76千克是多少,很明显,如果我们用加法计算是非常麻烦的,而求几个相同加数的和用乘法计算非常简便。
2.根据运算定律在下面的()里填上适当的数。
(1)136947=947()(2)3581002=1002()
(3)68+321+79=68+(+)
先让学生独立做,订正时让学生说一说是根据什么运算定律填数的。
二、新课
教师:上面复习题中的第2题的第(3)小题,应用了加法结合律,使原来的计算变得容易了。我们今天要学习的内容是乘法结合律。教师板书:乘法结合律。
1.教学例3。
(1)教师出示例3
观察下面每组的两个算式,它们有什么样的关系?
(154)10○15(410)
(1258)5○125(85)
先看第一组,圆圈两边的算式有什么关系?算算看。学生回答后,教师在圆圈里画一个等号。
再仔细观察一下,这两个算式相等说明了什么?多让几个学生说一说。
教师:15、4和10这三个数相乘,先把15和4相乘,再同10相乘;或者先把4和10相乘,再同15相乘,它们的乘积不变。
再观察第二组,圆圈两边的算式有什么关系?学生回答后,教师在圆圈里画一个等号。
等号两边相等说明了什么?
(2)比较上面两个算式。
教师:看上面的两个等式,仔细分析一下,并回答下面的问题。
这两个等式中,等号的两边都是几个数相乘?
每个等式中,等号两边的三个数相同吗?
这两个等式中,等号左边的两个算式有什么共同点?(乘的顺序相同,都是先把前两个数相乘,再同第三个数相乘。)
这两个等式中,等号右边的三个算式有什么共同点?(乘的顺序也相同,都是先把后两个数相乘,再同第一个数相乘。)
每个等式左右两边乘的顺序不同,但是它们的结果呢?
谁能把我们刚才说的概括一下?多让几个学生发言。
教师:刚才几个同学的发言理顺之后就很完整了。让学生打开教科书看例3后面的结语,先请一个同学读一遍,再让全体学生齐读。
接着,教师指出这就叫做乘法结合律,并板书:乘法结合律
(3)用字母表示乘法结合律。
教师提问:加法结合律怎样用字母表示?
乘法结合律也可以用字母表示,如果分别用a、b、c表示三个数,怎样用这三个数表示乘法结合律呢?学生回答后,教师板书:(ab)c=a(bc)
等号的左边表示什么?(先把前两个数相乘,再同第三个数相乘。)
等号的右边表示什么?(先把后两个数相乘,再同第一个数相乘。)
左边的算式和右边的算式中间用等号连接着,说明什么?(两个算式是相等的。)
(4)做第61页前半页做一做中的题目。
让学生把数填在自己的书上。订正时让学生说一说是根据什么运算定律填写的。
教师:应用加法交换律、结合律可以使一些计算简便。同样地,应用乘法交换律、乘法结合律也可以使一些计算简便。
2.教学例4。
出示例4:计算43254
如果按照运算顺序计算,应该先算什么?
想一想,怎样计算可以使计算比较简便?根据是什么?
为什么要先算254?(因为25乘4得整百数。)
教师板书:43254
=43(254)
=43100
=4300
教师:以后我们在计算这样的题目时,43(254)这一步可以省略。
3.教学例5。
出示例5:计算25434。
想一想,这道题怎样计算比较简便?让学生自己试算。然后集体核对,教师边听边板书,当板书43254这一步时,提问:
为什么要这样做?根据是什么?
当板书43(254)时提问:
这样做的根据是什么?
最后,教师指出以后我们在计算这样的题目时,简算的过程可以省略。
例5还有没有其它算法吗?(还可以先交换43和4的位置,然后先算25乘4,再用25乘4的积乘43。)
4.比较例4和例5。
在计算例4和例5时,在应用运算定律方面有哪些不同?让学生讨论。
教师:例4在计算时没有调换因数的位置,只应用了乘法结合律先把后面两个数相乘就可以使计算简便;例5要先算25和4相乘,先要应用乘法交换律把25和4调换到一起,然后再应用乘法结合律把25和4相乘,才能使计算简便。
教师:大家回忆一下,我们过去学习哪些知识时用了乘法结合律?学生发言后,教师肯定学生的回答,并明确指出:我们曾经学过2516的简便算法,这实际上就是应用了乘法交换律。(请学生自读第61页相关内容)
三、巩固练习
1.做第61页最后做一做中的题目。
先让学生自己思考怎样做才能使计算简便,然后再逐题讨论。
第1小题,怎样做才能使计算简便?应用了什么运算定律?(先算4乘5,再同27相乘,应用了乘法结合律。)
第2小题,怎样做才能使计算简便?应用了什么运算定律?(先把8和7交换位置再算8和25相乘,然后再和7相乘,应用了乘法交换律和乘法结合律。)
第3小题呢?(因为25和4相乘得100,所以先把12改写成3乘4,再算25和4相乘,然后再把100和3相乘,应用了乘法结合律。)
2.做练习十三的第2-3题。
(1)做第2题。先让学生独立做,然后集体核对。让学生说一说应用了什么运算定律。强调数的位置的交换和改变运算顺序的特征。
(2)做第3题。让学生说一说应用了什么运算定律及乘法运算定律的特征。
四、作业
练习十三的第4-5题。
(1)做第5题。引导学生认真观察、细心分析:哪些算式应用了运算定律?是什么运算定律?哪些算式不是运算定律,并且说出为什么。
(2)做第4题。由学生独立计算,订正时说说应用了什么运算定律。
乘法结合律课件 篇4
乘法结合律
教学内容:P25:例6.
教学目标
知识与技能:引导学生探究和理解乘法交换律,能运用运算定律进行一些简便运算。
过程与方法:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:理解乘法交换律,能运用运算定律进行一些简便运算。
教学难点:
1、能灵活运用乘法结合律解决简单的实际问题,提高计算能力。
2、能用自己的语言描述乘法交换律,并会用字母表示。
教具学具:多媒体课件
教学过程
一、创设情境,生成问题
1、旧知复习:
(1)我们刚刚学习了两条加法运算定律,同学们还记得么?谁能说一说?什么是加法交换律,用字母应该怎样表示?加法结合律呢?
(2)学习加法运算定律时采用的教学思路是怎样的?
引导学生思考、回答,教师板书:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
2、引入新课:回答的真不错~!今天我们来学习新的运算定律
3、教师谈话引出情景:为保护环境,光明小学开展了植树活动(出示主题图),这就是植树活动的现场,我们来看看。从图上你发现了哪些数学信息?根据这些数学信息你能提出哪些数学问题?让学生充分发言,根据学生的回答老师板书3个问题:
4、(1)负责挖坑、种树的一共有多少人?(2)一共要浇多少桶水?(3)一共有多少名同学参加了这次植树活动?
教师说明:这节课我们先来解决前两个问题。引导学生看第一个问题:负责挖坑、种树的一共有多少人?应该怎样列式?
指名列式,并说明列式依据。教师板书:4×5和25×4
二、探索交流,解决问题
1、教学乘法交换律:
(1)探究、发现问题:
教师提问:4×25和25×4得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(引导学生回答,明确:4×25=25×4)
(2)举例验证:
教师问:你还能举出类似的例子吗?(指名举例,教师板书:如,35×2=2×3560×30=30×60)
(3)概括规律:
a、总结定律:
教师提问:从以上几组算式中你能发现什么,能用自己的话说出你发现的规律吗?
提醒学生由加法交换律的总结思路想,总结好后说给同桌听。汇报得出结论,板书定律:交换两个因数的位置,积不变。
b、定律命名:
教师提问:这个规律叫什么名字呢?
学生可能马上说出:乘法交换律,再让学生说是怎么想到的。
c、用字母表示定律:
教师谈话:请用你喜欢的方式表示乘法交换律,看谁的方法既简单又清楚。学生很容易想到:用字母表示:a×b=b×a,对学生的表现给予肯定,板书公式:a×b=b×a
让学生判断:这里的a与b可以是哪些数?(任意数)
(4)乘法交换律的应用:
教师提问:以前我们什么时候用过乘法交换律?引导学生回忆:做乘法验算时。
完成“做一做”前两道,指名板演,订正。教师谈话:用这个定律时该注意什么?(数不能变化,运算符号不能错)
三、巩固练习
下列哪些算式用了乘法交换律。
27+34=34+2715×13=13×15
24×48=12×9616×20=4×4×20
四、课堂小结:什么是乘法交换律
板书设计:乘法交换律
4×25=100(人)25×4=100(人)
乘法交换律:两个因数相乘,交换两个因数的位置,积不变。
乘法结合律课件 篇5
教学目标
1、通过练习,使学生进一步掌握简便计算的方法,并能根据数的特征灵活的运用乘法交换律和结合律进行计算。
2、通过简便计算的推理过程,提高学会应用公式进行简算的能力。
教学过程:
(一)独立口算
练习四第1题
让学生独立完成,然后全体进行校对,接着让学生说出各组数的特点:第一组最基本的步骤是52,第二、三组分别是254和1258。看到这些计算结果,你想到了什么?
(二)启迪计算
从口算训练引入,揭示课题--乘法中的简便计算练习。接着老师提出目标。
(三)分层训练
1、应用乘法结合律为主的简算。
教材第3题:用简便方法计算。
4(1950)25036402755
(816)12512548256403
先审题,说一说哪几道是同一类型的题目,分别怎样计算?
讨论后由学生同桌合作,各选择每一组中的一组进行计算,完成后相互批改。
2、运用乘法交换律的简算。
课本第2题,用简便方法计算。
由学生独立完成,比一比哪一组全对的同学多。学生完成
后检查并自批。教师巡视纠错,最后校对,评比哪一组全对的人数多。
3、小结反思。通过以上两组乘法中的简便计算,你认为已学
的乘法中的简算有哪些特征?依据是什么?
回答问题时同学之间互相补充。回答2时学生口答乘法交换律和结合律的文字叙述和字母公式。
回答后再让学生根据简算特征编几道可简算的题目。
4、综合应用
在第三步编题的过程中,教师再问在连加和连减中我们还
学到过怎样的简便计算?让学生举例,并说出依据,如324-127―173,428―(128+253),484+347+216+453,教师板书学生的算式,然后学由学生口算出结果并说出依据。
独立完成第4题,并补充:计算241350。教师巡回纠错,校对时重点讲评:125325
=125(84)5
=(1258)(45)
=100020
=20000
补充题学生可能会计算成241350=(2450)13=1000
13=13000。学生指出错误并订正后,教师讲评计算时一定要注意数据的特征与变化,不能想当然的做。
5、应用题,
课本第5题。
学生读题后独立完成,教师巡回辅导后进学生,完成快的
同学说一说思路,完成后指名学生说一说思路和简算的依据,列式为24520=24(520)=24100=2400或直接列为24(520)。
(三)总结
今天这节课重点练了哪些内容,你还有什么不懂的地方吗?(四)作业
《作业本》[12]
乘法结合律课件 篇6
教学内容:教材第84页例3、例4和练一练,练习十七第5~7题。
教学要求:
使学生初步理解和学会应用乘法交换律、结合律进行简便计算的方法,并能对一些乘法算式用简便算法正确计算,培养学生采用合理、灵活的方法进行乘法计算的能力。
教学过程:
一、复习引新
1.什么叫做乘法的交换律你能用字母表示吗(板书字母表示的乘法交换律)
2.什么叫做乘法的结合律你能用字母表示吗(板书字母表示的乘法结合律)
3.口算。
15x2x12=25x4x17=35x2x9=
125x8x3=45x2x8=4x15x13=
提问:上面各题口算时为什么比较方便(前两个因数相乘的积是整十、整百或整千数)
指出:连乘时如果两个数先乘得的积是整十、整百或整千数,再和第三个数相乘就比较简便。
4.引入新课。
应用刚才复习的乘法的交换律和结合律,可以使一些计算简便。这节课就学习应用乘法的交换律和结合律,进行简便计算(板书课题)。应用这两个运算定律进行简便计算时,就是要先把能乘得整十、整百或整千的数先乘起来,然后再计算就比较简便。请看下面的例题;
二、教学新课
1.教学例3。
(1)出示例3的第(1)、(2)题。
(2)请看第(1)题。(板书:23x15x2)
提问:三个因数里哪两个数相乘可以得到整十数的积先算什么比较简便[板书:=23x(15x2)]为什么应用了什么运算定律
谁能说一说,这道题哪两个数相乘得整十数,应用乘法结合律先算什么
让学生口算,老师板书计算过程。
提问:这里的简便算法是怎样想到的
(3)再看第(2)题。[板书:125x(7x8)]
提问:这里哪两个数先相乘比较简便要先算125x8,要把因数7和8的位置怎样变化这就应用了什么运算定律[板书:=125x(8x7)]交换7和8的位置后,又要应用什么运算定律先算8乘1257
谁来告诉大家,怎样看出这道题是可以简便计算的先应用乘法交换律怎样做,再应用乘法结合律怎么做
哪位同学连起来说说看,用简便算法这道题要怎样想(板书计算过程)
(4)提问:从上面两道题可以看出,在连乘里怎样的题可以应用乘法运算定律使计算简便第(1)题应用了什么运算定律使计算简便第(2)题应用了哪些运算定律使计算简便
2.练一练第1题。
(1)提问每道题怎样算比较简便。
(2)指名三人板演,其余学生做在练习本上。
集体订正,让学生说一说每道题是怎样想的。
3.教学例4。
(1)出示例4。
提问:35乘以18不便口算。想一想,35和几相乘可以得十数这就要把18看成2和几的积[板书:=35x(2x9)]
你能看出怎样算比较简便吗这是应用了什么运算定律
谁来说一说,用简便算法这道题要怎样想
(2)小结:35和18相乘不便用口算时,把18看成2和9的积,应用乘法结合律,先算35乘以2得整十数70,就可以使计算简便。
4.练一练第2题。
(1)请大家按照例4这样的算法,说说练一练第2题里每道题怎样算。
(2)指名三人板演,其余学生做在练习本上。
集体订正,让学生说一说每道题是怎样想的。
小结:当两个因数相乘不便用口算时,如果一个因数看做几与几相乘的积之后,就能得到整十、整百的数,那么按刚才的算法就比较简便。
三、课堂练习
1.练习十七第5题。
指名四人板演,其余学生分两组,每组做一行的两道题。
先按照原来的运算顺序算一遍,再应用乘法的运算定律来简便计算。然后集体订正。
提问:这里四道题,都是哪一种算法比较简便为什么这样算比较简便
小结:在乘法计算时,如果有两个因数相乘的积是整十、整百的数,就可以应用乘法的交换律或结合律,把这两个数先乘,再和其他因数相乘,使计算简便。
2.练习十七第6题。
小黑板出示,让学生说一说每道题先算哪两个数相乘,应用的什么运算定律。
四、课堂作业
练习十七第6、7题。
乘法结合律课件 篇7
教学内容
苏教版小学数学四年级上册第59-60页例题,及60-61页想想做做的第1-5题。
设计思路
对于乘法定律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境猜谜语导入,激发学生的学习兴趣,让学生在玩中发现问题,提出猜想、进行验证、总结应用的思路进行的,应该说这样的思路是符合当今新教学理念的。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
教学目标
1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
3.增强合作意识,激发学生学习数学的兴趣。
教学重点
引导学生概括出乘法结合率,并运用乘法结合率进行简便计算。
教学难点
乘法结合率的推导过程是学习的难点。
教学准备
幻灯片。
教学过程
一、猜谜引入,揭示课题
师:猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。
生:(积极举手,低声喊)纽扣。
师:你为什么会想到是纽扣
生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。
师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。
师:用字母如何表示加法交换律、结合律呢
板书:a+b=b+aa+b+c=a+(b+c)
师:乘法有没有类似的规律今天我们就来学习乘法的一些运算定律。(板书课题)
[设计意图:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]
二、猜测验证,教学新知
(1)教学乘法交换率。
师:(猜一猜)乘法可能有哪些运算定律?
生1:乘法可能有交换律。
生2:乘法可能有结合律。
生3:
师:乘法是否具有你们猜测的规律呢怎样确认自己的猜测看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)
学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)
[设计意图:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]
交流。
生1:我们小组经过讨论认为乘法有交换律。比如:24=42,013=130等等。两个乘数的位置变了,但它们的积不变。
生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。
生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。
师:有没有不同意见(指名让刚才说乘法没有交换律的学生发言。)
生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如20xx=8200。
师:你能用自己的语言描述一下乘法交换律吗
结论:两个数相乘,交换乘数的位置,积不变。
师:谁能用字母来表示呢?
生:ab=ba(板书)
[设计意图:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。]
师:最近学校要开展冬季三项比赛,每个班的学生都在练习,看!这是老师在校园里看到的景象。(出示图片:踢毽子)
师:你能看图把下面的等式填写完整吗?
35=()()
师:这就是乘法交换率。
[设计意图:出示例题,巩固所学的新知。让学生在自己的探索中学习,体现了新课程下的自主学习。]
(2)教学乘法结合率。
生4:我们发现乘法也有结合律。如:(32)4=3(24)。
生5:我们也同意这种观点。
师:我们一起来证明一下这个结论是正确的吗?出示例题2。
华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参见比赛?
小组讨论,你们是怎样计算的?
生1:先算出一个年级参加的人数。
(235)6=1156=690(人)
生2:先算出全校有多少个班。
23(56)=2330=690(人)
师:你会把上面的两道算式写成一个等式吗?
(235)6=()
师:比较等号两边的算式,有什么相同点和不同点?
生:我觉得右边的算式计算简便,可以直接口算出答案。
师:非常好,我们在计算的时候,可以根据运算定律来简便计算,这样能节省时间。
[设计意图:让学生自己感受交换两个乘数的位置,计算起来比较简便,为下面学习试一试部分奠定基础。]
师:请同学们也写几组这样的等式,把你的发现在小组里交流。能用自己的语言描述一下乘法结合律吗
结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
师:你说得很准确,有什么好方法帮助记忆
生:我把加法结合律里的加换成乘,把和换成积,其余的不变。
生:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指*在一起,表示先把前两个数相乘,第三个手指*过来表示再和第三个数相乘;它等于先把后两个手指*在一起,再把第一个手指*过来。
师:这个记忆方法确实很好,我们大家一起来试一试。
师:怎样用字母表示乘法结合律
板书:(ab)c=a(bc)
[设计意图:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]
(3)教学试一试(用简便方法计算)。
师:刚才我们已经学习了乘法的运算定律,现在看看同学们有没有掌握呢?出示试一试上的习题。(1)23152(2)5372
放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。
师:运用了乘法的运算率,计算时你有什么体会?
生1:感觉简便了。
生2:计算的时候节约了时间,也不会算错了。
[设计意图:新授了乘法结合律与交换律之后,直接教学试一试的内容,让学生自己体会乘法结合律与交换律对计算的简便之处,有利于以后计算时能快速运用。]
三、巩固深化,应用拓展
师:回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助
生:我们验算乘法时就应用了乘法的交换律。
基本练习。想想做做的第1~3题。
发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。
869=()
[设计意图:练习的层次鲜明,目标明确;促进学生构建新的知识网络。]
四、全课小结,布置作业
今天这节课你学到了什么?
课堂作业:P60~61第4、5
乘法结合律课件 篇8
教学内容:探索与发现(二)乘法结合律(第46-47页)
教学目标:
1、通过探索活动,进一步体会探索的过程和方法。
2、通过探索活动,发现乘法的结合律,并用字母进行表示。
3、在理解结合律的基础上,会对一些算式进行简便计算。
教学重、难点:
1、通过探索活动,进一步体会探索的过程和方法,发现乘法的结合律。
2、在理解结合律的基础上,会对一些算式进行简便计算。
教学准备:教学挂图,计算器
教学过程:
一、发现问题:
1、出示长方体图,让学生估计搭这个长方体用了多少个小正方体。
2、用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。
二、提出假设、举例验证、建立模型
1、根据上题的规律提出假设
2、验证提出的假设是否适合其它数据
小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。
全班交流,并用字母表示结合律。
三、运用乘法结合律的简算。
1、试一试第1题:
让学生尝试用乘法结合律解决连乘运算中的简算问题。然后进行交流,概括出简算的方法。
2、进一步尝试用用乘法结合律解决连乘运算中的简算问题。
[板书设计]
乘法结合律
3(54)=6015254=1500
教学挂图(35)4=6015(254)=1500
乘法结合律:(ab)c=a(bc)
乘法结合律课件 篇9
【教材分析】
本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。本节课把认识乘法结合律主要放在学生自主的探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。在本课教学中学生将初次感受用字母表示数,而猜测、估算等教学内容学生在第一学段已经接触,本节课重点是在交流活动中归纳一些估算的方法。通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。
【学情背景】
学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。
知识技能上:在学习本课前,学生已经知道:254=100
1258=1000以及整十整百整千数乘法计算比较简便。经过对学生的课前调查,发现优生通过预习能初步掌握乘法结合律,中等生经过指导能较快掌握,学困生需要多次合作交流,练习指导能掌握。
【教学内容和学习水平的分析与确定】
表1、知识点与认知水平确定
编号知识点认知水平分析
(1)探索与发现
乘法结合律识记理解应用分析综合
表2、学习水平的具体分析
知识点类学习
水平认知内容描述学生行为动词
(1)理解理解乘法结合律理解并能运用语言描述
应用对一些算式简便计算简便计算
分析
综合综合应用乘法定律,对一些算式简便计算综合应用乘法定律,对一些算式简便计算
【设计意图】
如何有效的创设情境,引导学生探索学习新知是我校课改实验探索转变学生学习方式中的一个子课题,本节课把认识乘法结合律重点放在引导学生自主的探索中。先是口算,为学习简便算作铺垫。进而揭示乘法交换律,这部分教学内容是教材试一试第2题,并非本课教学主要内容,将这部分内容提前教学,主要考虑学生从二年级起已经滲透了乘法交换律思想,只不过没有进行抽象概括,借乘法交换律的概括让学生体验用字母表示数要比直接教学用字母表示乘法结合律学生更容易接受。接着创设情境组织学生猜想,教师对教材主题图进行挖掘再设计,只显示主题图正面,与上面遮盖侧面,引导学生积极进行合理性猜测来估计小正方体的总数,培养猜想、估计意识。然后出示主题图新授,通过从不同角度观察写出计算小正方体总数的不同算式,在计算过程中发现问题、提出假设、而后举例验证,计算器帮助探索,进而建立模型,归纳总结用字母表示乘法结合律,并能用自己的语言描述乘法结合律。最后应用规律,由学生独立尝试练习、集体交流对一些算式简便计算。
【学习目标】
(一)知识与技能:通过探索活动,发现乘法结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。
(二)过程与方法:经历数学探索过程,进一步体会探索的过程和方法。
(三)情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。
【学习重难点】
探索、发现、理解、应用乘法结合律。
【教学策略】
创设情境,组织探索,引导自主学习。
【教学故事】
本课新授教学,改变原教材先学乘法结合律,再学乘法交换律的编排顺序,教师先组织学生以旧引新,引导学生在具体的运算中学习用字母表示乘法交换律,为学生学习用字母表示乘法结合律打下基础。
出示情境图1
:师:看过这个图后,你们想提哪些数学问题?
生1:这个长方形里有多个个正方形?(等等)
师:哪有多少个?你们是怎么数的?
生2:每行5个小正方形,一共有四行,54=20(个).
生3:每列4个小正方形,一共有5列,45-20(个)
师:从这两个伙伴算法中你们发现了什么?
生4:54=45就是二年级学乘法口诀时有五四二十和四五二十是一回事.
师:你们能再举一些这样的例子吗?
生略:学生举了很多,可想而知)
师:若老师用a和b代表这两个因数,大家能把上面的等式写出来吗?
生:写出ab=ba
师:同学们:ab=ba这就是乘法的交换率,
生:噢!
当教学转入乘法结合律的学习时,教师利用下图创设了让学生说说大长方体中含有多少个小正方体,这时学生的估算情绪很高,因第一个情境与第二个情境图是从平面过渡到立体,学习情感很自然过渡过来。
师:现在你能准确地算出一
共有几个小正方体吗?你是怎样算的?
全体学生思考片刻
提出让全体同学运用已有的知识列式计算出到底大长方体含有几个小正方体。开始学生都只从正面看:从正面看,:每层有54=20个,有这样的3层,列式是:543=60。这时,我想:学生的观察思维表现得很贫乏,应当抓住机会引导学生学会如何从不同角度去观察思考。所以,我就提出:大家能从不同的方向进行观察思考来解决这个问题吗?这时学生的探索情绪被调动了起来,不一会,纷纷举手:
生:老师我想从上面看,一共有354=60
生:老师我想从侧面看,一共有:345=60
进而教师组织学生观察这些算式,说说你发现了什么?同学们通过独立观察,很快的自主发现:
1:三个算式所有的因数都是3、4、5。
2:三个算式的积都相等。
3:三个算式只是先算什么,再算什么不一样。
教师根据学生发言板书:345=354=543
既而我引导学生既然这三个连乘的式子的积都相等,在计算时哪个式子你认为乘起来感觉最快?为什么?
根据计算经验,所有同学一致同意喜欢543,因为45=20,20是整十数,整十数乘法比较简便。
我接着引导说:如果不改变因数的位置,又想先算45=20,再算203=60,怎么办?由于学生已有加小括号可以改变运算顺序的经验,同学们很快知道345=3(45),3(54)
而后我引导学生质疑刚才我们的发现是否是一个规律呢?
怎样验证我们的想法呢?谈到验证,大多数学生显得不知所措,此时,我引导学生可以回顾乘法结合率的揭示过程,终于一位学生提议:我们可以再举一些例子看看。通过全体同学亲自举例,大家验证了乘法结合率,这时我告诉学生这个律叫做结合律。而后我要求同学们用自己的语言说说咱们的发现。通过语言描述,进一步理解了乘法结合率。在学生理解的基础上,加上开头引导交换率基础,再引导学生归纳总结用字母表示乘法结合律。虽然用字母表示数为学生初次所接触,但由于教学设计引导得当,学生归纳的非常轻松。在后面的应用规律进行练习时,全体同学均能正确、独立地完成。顺利地完成本课教学任务。
应用规律,尝试练习
1、你能用乘法结合律使下列的计算简便吗?
38254
421258
应用刚才探索的乘法结合律学生独立尝试,经过学生自己的尝试与交流,概括出简便计算的一些基本方法。
2、填空
3525=35(2___)
(6025)4=60(___4)
(1255)8=(______)5
(34)56=(____)(____)
3、利用发现的规律,计算。
25174
(25125)(84)
3812583
全体学生独立练习,再讲评。理解乘法交换率,结合律,会对一些算式进行简便计算。
【思考】
12532125324
【教后反思】
本节课我根据教材编写意图,精心设计教学环节组织学生进行乘法结合律的发现与探索活动。这次的数学活动基本完成了预设的学习目标。上完这一课我收获以下几点:
1、充分挖掘教材进行再设计,组织学生估计,多角度观察与多种算法,这一环节设计安排得较好,做到充分利用教材较好地培养了学生的估计意识。
2、两次的验证活动安排设计得较好,第一次借直观图形进行验证,第二次在学生获得感性认识的基础上,启发学生思考第一次的发现是否适合其他算式呢,引导学生扩大验证的范围,用抽象的算式举例验证,为发现、概括乘法结合律奠定基础。
3、及时帮助学生梳理思路,掌握探索的基本步骤。
探索数学规律是有一个过程的,这个过程需要学生自己体验、感受。本课教学,我在学生已经概括出乘法结合律后,没有立即组织学生进行相关内容的练习,而是询问学生:刚才我们是怎样发现乘法结合律呢?对学生刚刚经历的体验与感受及时进行梳理总结。
在教学中我也发现了一些问题,如:学生初次用自己的语言描述乘法结合律比较困难,会出现表达不够严谨的现象,此时,我引导得不够巧妙,有将自己的想法强加给学生的意图。另外,在归纳总结探索步骤时,学生归纳得较为迟钝,是否前面的探索经历对学生而言不够深刻。
乘法结合律课件 篇10
本课题教时数:25本教时为第16教时备课日期11月7日
教学目标
1.使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。
教学重难点
使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。
教学准备
投影片
教学过程设计
教学内容
师生活动
备注
一、揭示课题
二、学习新课
三、巩固练习
四、课堂小结
五、课堂作业
1.我们已经学过加法的运算定律,请大家回忆一下,是怎样的?
2.加法交换律用字母公式如何表示?加法结合律呢?(板书)
3.请大家大胆地猜测一下:乘法有
怎样的运算定律?(学生猜测)
4.大家猜的非常好,的确乘法也有
交换律和结合律?这节课我们一起来研究一下乘法的交换律和结合律。(板书课题)
1.学习例1
(1)出示例1
(2)小组合作,想一想:怎样求出邮票的总张数?
(3)组织交流:①43=12(张)②34=12(张)
(4)思考:这两种算法都是求什么的?结果怎样?从中你体会到了什么?(板书:43=34)
(5)这两个算式有什么相同和不同的地方?
2.其他的算式是不是也有着这样的特点呢?出示第81页上的有关题目。学生先计算再比较。
3.从这些算式中,你体会到了什么?谁能来归纳一下。你能用字母公式来表示吗?(根据学生所讲,板书ab=ba)。
4.学习乘法交换律的应用。
乘法交换律我们以前有没有碰到过?你能举个例子吗?
完成练一练的第1题。指名一人板演,其余学生做在练习本上。
5.学习乘法结合律。
(1)出示计算题。①(1412)5②14(125)
(2)学生按运算顺序计算,指名两人板演。
(3)比较两个算式的结果,你可以得出怎样的结论。
(4)板书:(1412)5=14(125)。比较这两个算式有什么相同的地方和不同的地方?
6.其他的算式是不是也有着这样的特点呢?出示第83页上的有关题目。学生先计算再进行比较。
7.从中你发现了什么?谁能来归纳一下?你能用字母公式来表示吗?[板书:(ab)c=a(bc)]
8.谁能根据字母公式,来说一说乘法有着怎样的运算定律?
1.在□里填上合适的数,并说说这样填的理由。
(1)9635=35□4827=□48
(1615)4=16(□□)
25(218)=(25□)□
(3)判断:哪些等式应用了乘法运算定律?应用了什么定律?
153=315
2124=4212
7(86)=7(68)
(32)1=3+(2+1)
(434)15=43(415)
今天这节课我们一起学习了什么内容?你有什么收获?
练习十七第1题、第4题
课后感受
学生由于已经有了加法运算定律的积累,所以今天的课上的很顺,学生大多能正确地进行迁移、应用。少数同学会在回答概念时,把乘法口误成加法。
乘法结合律课件 篇11
教学内容:教科书第60页的例3、第61页的例4和例5,完成练习十三的第611题。
教学目的:使学生理解并掌握乘法结合律,能够应用乘法交换律和结合律进行简便计算,培养学生逻辑思维能力。
教学重点:乘法结合律
教学难点:应用乘法交换律和结合律进行简便计算
教具准备:小黑板
教学过程:
1、复习
1.教师出示应用题一个呀养蜂组养把105箱蜜蜂,平均每箱蜜蜂每年可以产蜂蜜76千克。这个养蜂组一年生产蜂蜜大约多少千克?
让学生先默读题目,然后在自己的练习本上解答,学生做完以后,教师提问:
你是怎样做的?
你为什么用乘法计算,而不用加法计算呢?
教师肯定学生的回答,再明确指出,这道题实际求的是105个76千克是多少,很明显,如果我们用加法计算是非常麻烦的,而求几个相同加数的和用乘法计算非常简便。
2.根据运算定律在下面的()里填上适当的数。
(1)136947=947()(2)3581002=1002()
(3)68+321+79=68+()
先让学生独立做,订正时让学生说一说是根据什么运算定律填数的。
二、新课
教师:上面复习题中的第2题的第(3)小题,应用了加法结合律,使原来的计算变得容易了。我们今天要学习的内容是乘法结合律。教师板书:乘法结合律。
1.教学例3
(1)教师出示例3,并贴出例3的插图,请一名学生读题,提问:
怎样求一共有多个少乒乓球?怎样列式?(可以先求出第一排有多少个乒乓球,再求两排一共有多少个。)
怎样表示先求第一排乒乓球的个数,再求两排一共有多少个呢?(可以在54的外面加一个括号,即(54)2。最后的结果是40个。)
还可以怎样求?怎样列式?(还可以先求出一共有多少袋乒乓球,再求出一共有多少个乒乓球。)
怎样表示先求出一共有多少袋,再求出一共有多少个乒乓球呢?(可以在42的外面加一个括号,即5(42)。最后的结果也是40个。)
这两种计算方法的结果是怎样?
教师:两个算式的计算结果相同都是40个,说明这两个算式可以用等号连接起来,板书:(54)2=5(42)
比较一个等号两边的算式,它们的相同点是什么?(等号左面是5、4、2三个数相乘,等号右边也是这三个数相乘。)
它们的不同点是什么?(乘的顺序不同,等号左边是先把5和4相乘,然后再用乘得的积与2相乘;等号右边是先把4和2相乘,然后再用乘得的积与5相乘。)
教师:5、4和2三个数相乘,先把5和4相乘,再同2相乘;或者先把4和2相乘,再同5相乘,按这两种顺序所乘得的结果是一样的,也就是乘积不变。
(1)再出示两组算式:(154)10○15(410)
(1258)5○125(85)
先看第一组,圆圈两边的算式有什么关系?算算看。学生回答后,教师在圆圈里面一个等号。
再仔细观察一下,这两个算式相等说明了什么?多让几个学生说一说。
教师:15、4和10这三个数相乘,先把15和4相乘,再同10相乘;或者先把4和10相乘,再同15相乘,它们的乘积不变。
再观察第二组,圆圈两边的算式有什么关系?学生回答后,教师在圆圈里面一个等号。
等号两边相等说明了什么?
(3)比较上面三个算式
教师:上面我们看了三个等式,仔细分析一下这三个等式,并回答下面的问题。
这三个等式中,等号的两边都是几个数相乘?
每个等式中,等号两边的三个数相同吗?
这三个等式中,等号左边的三个算式有什么共同点?(乘的顺序相同,都是先把前两个数相乘,再同第三个数相乘。)
这三个等式中,等号右边的三个算式有什么共同点?(乘的顺序相同,都是先把后两个数相乘,再同第一个数相乘。)
每个等式左右两边乘的顺序不同,但是它们的结果呢?
谁能把我们刚才说的概括一下?多让几个学生发言。
教师:把刚才几个同学的发言凑起来就很完全了。让学生打开教科书看例2后面的结语,先请一个同学读一遍,再让全体学生齐读。
接着,教师指出这就叫做乘法结合律,并板书:乘法结合律。
(4)用字母表示乘法结合律。
教师提问:加法结合律怎样用字母示示?
乘法结合律也可以用字母表示,如果分别用a、b、c表示三个数,怎样用这三个数表示乘法结合律呢?学生回答后,教师板书;(ab)c=a(bc)
等号的左边表示什么?(先把前两个数相乘,再同第三个数相乘。)
等号的右边表示什么?(先把后两个数相乘,再同第一个数相乘。)
左边的算式和右边的算式中间用等号连接着,说明什么?(两个算式是相等的。)
(5)做第61页前半页做一做中的题目。
让学生把数填在自己的书上。订正时让学生说一说是根据什么运算定律填写的。
教师:应用加法交换律、结合律可以使一些计算简便。同样地,应用乘法交换律、乘法结合律也可以使一些计算简便。
2..教学例4
出示例4:43254
如果按照运算顺序计算,应该先算什么?
想一想,怎样计算可以使计算比较简便?根据是什么?
为什么要先算254?(因为25乘以4得整百数)
教师板书:43254
=43(254)
=43100
=4300
教师:以后我们在计算这样的题目时,43(254)这一步可以省略。
3.教学例5
出示例5:计算25434
想一想,这道题怎样计算比较简便?让学生自己试算。然后集体核对,教师边听边板书,当板书43254这一步时,提问:
为什么要这样做?根据是什么?
当板书43(254)时提问:
这样做的根据是什么?
最后,教师指出以后我们在计算这样的题目时,简算的过程可以省略。
例5还还有没有其它算法?(还可以先交换43和4的位置,然后先算25乘以4,再算乘以43。)
4.比较例4和例5
在计算例4和例5时,在应用运算定律方面有哪些不同?让学生讨论。
教题:例4在计算时没有调换乘数的位置,只应用了乘法结合律先把后面两个数相乘就可以使计算简便;例5要先算25和4相乘,先要应用乘法交换律把25和4调换到一起,然后再应用乘法结合律把25和4相乘,才能使计算简便。
三、巩固练习
1.做第61页最后做一做中的题目。
先让学生自己思考怎样做才能计算简便,然后再逐题讨论。
第一小题,怎样做才能使计算简便?应用了什么运算定律?(先算4乘以5,再同27相乘,应用了乘法结合律。)
第二小题,怎样做才能使计算简便?应用了什么运算定律?(先把8和7交换位置,再算8和25相乘,然后再和7相乘,应用了乘法交换律和乘法结合律。)
第三小题?(因为25和4相乘得100,所以先把12改写成8乘以4,再算25和4相乘,然后再把100和3相乘,应用了乘法结合律。)
2.做练习十三的第69题。
(1)做第6、7、8题。先让学生独立做,然后集体核对、核对第8题时,要让学生说一说是怎样做的,应用了什么运算定律。
(2)做第9题。做的时候要让学生说一说怎样计算简便,应用了什么运算定律。
四、作业
练习十三的第10、11题。
乘法结合律课件 篇12
教学内容:教科书第23页的例3、第24页的例4和例5,完成练习五的第3-6题。
教学目的:使学生理解并掌握乘法结合律,能够应用乘法交换律和结合律进行简便计算,培养学生逻辑思维能力。
教学重点:能够应用乘法交换律和结合律进行简便计算。
教学难点:培养学生逻辑思维能力。
教具、学具准备:教师把复习中的应用题和填空题写在小黑板上。
教学过程:
一、复习旧知,引起迁移:
1、教师出示应用题一个养蜂组养了105箱蜜蜂,平均每箱蜜蜂每年可以产蜂蜜76千克。这个养蜂组一年生产蜂蜜大约多少千克?
让学生先默读题目,然后在自己的练习本上解答。
学生做完以后,自愿结组讨论下列问题。
(1)你是怎样做的?
(2)你为什么用乘法计算,而不用加法计算呢?
教师肯定学生的回答,再明确指出:这道题实际求的是105个76千克是多少,很明显,如果我们用加法计算是非常麻烦的,而求几个相同加数的和用乘法计算非常简便。
2.根据运算定律在下面的()里填上适当的数。
(1)136947=947()(2)3581002=1002()
(3)68+321+79=68+(+)
先让学生独立做,订正时让学生说一说是根据什么运算定律填数的。
二、学习新知
教师:上面复习题中的第2题的第(3)小题,应用了加法结合律,使原来的计算变得容易了。我们今天要学习的内容是乘法结合律。教师板书:乘法结合律。
1.学习例3。
教师出示例3
小组讨论;(1)这两种计算方法的结果怎样?为什么?
(154)10()15(410)
(1258)5()125(85)
教师:再仔细观察一下,这两个算式相等说明了什么?
(充分发挥学生的想象力)
(2)比较上面两个算式。
教师,上面我们看了两个等式,仔细分析一下这两个等式,并回答下面的问题。
这两个等式中,等号的两边都是几个数相乘?
每个等式中,等号两边的三个数相同吗?
这两个等式中,等号左边的两个算式有什么共同点?(乘的顺序相同,都是先把前两个数相乘,再同第三个数相乘。)
这两个等式中,等号右边的两个算式有什么共同点?(乘的顺序也相同,都是先把后两个数相乘,再同第一个数相乘。)
每个等式左右两边乘的顺序不同,但是它们的结果呢?
谁能把我们刚才说的概括一下?多让几个学生发言。
教师:把刚才几个同学的发言凑起来就很完全了。让学生打开教科书看例3后面的结语,先请一个同学读一遍,再让全体学生齐读。
接着,教师指出这就叫做乘法结合律,并板书:乘法结合律。
(4)用字母表示乘法结合律。
教师提问:加法结合律怎样用字母表示?
乘法结合律也可以用字母表示,如果分别用a、b、c表示三个数,怎样用这三个数表示乘法结合律呢?学生回答后,教师板书:(ab)c=a(bc)
等号的左边表示什么?(先把前两个数相乘,再同第三个数相乘。)
等号的右边表示什么?(先把后两个数相乘,再同第一个数相乘。)
左边的算式和右边的算式中间用等号连接着,说明什么?(两个算式是相等的。)
(5)做第24页前半页做一做中的题目。
让学生把数填在自己的书上。订正时让学生说一说是根据什么运算定律填写妁。
2、学习例4。
出示例4,43254。
分组讨论:(1)如果按照运算顺序计算,应该先算什么?
(2)算可以使计算比较简便?根据是什么?
小组派代表汇报
教师板书:43254
=43(254)
=43100
=4300
教师:以后我们在计算这样的题目时,43(254)这一步可以省略。
3.自学例5。
让学生自己试算。然后集体核对。
4、小组学习:比较例4和例5。
在计算例4和例5时,在应用运算定律方面有哪些不同?让学生讨论。
三、巩固练习
1.做第24页最后做一做中的题目。
先让学生自己思考怎样做才能使计算简便,然后再逐题讨论。
第一小题,怎样做才能使计算简便?应用了什么运算定律?(先算4乘以5,再同27相乘,应用了乘法结合律。)
第二小题,怎样做才能使计算简便?应用了什么运算定律?(先把8和7交换位置,再算8和25相乘,然后再和7相乘,应用了乘法交换律和乘法结合律。)
第三小题呢?(因为25和4相乘得100,所以先把12改写成3乘以4,再算25和4相乘,然后再把100和3相乘,应用了乘法结合律。)
2.做练习五的第3-4题。
(1)做第3题。先让学生独立做,然后集体核对。核对时,要让学生说一说是怎样做的,应用了什么运算定律。
(2)做4题。做的时候要让学生说一说怎样计算简便,应用了什么运算定律。
四、作业
练习五的第5题。
板书设计:乘法结合律和简便算法
例4:43254例5:25434
=43(254)=43(254)
=43100=43100
=4300=4300
教学设想:本课大量采用了自学的学习的方法,尤其是简便方法的应用,这样有助与学生形成比较科学的数学学习方法。通过实践――总结――再实践课型,能把学到的知识应用于实践,并在实践中得到验证。
课后附记:
乘法结合律课件 篇13
教学内容:
教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点:理解乘法交换律和乘法结合律。
教学难点:能运用乘法交换律和乘法结合律进行简便计算。
教学准备:多媒体。
教学方法:
尝试法、观察比较法。
教学过程:
一、复习导入
我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。
二、探究新知。
1、主题图引入
(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。
(2)你能提出哪些问题?(指定多名学生说一说。)
2、学习例1。
(1)出示例1:负责挖坑、种树的一共有多少人?
(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。
(3)学生独立列式计算。教师根据学生回答,边板书:
4×25=100(人)25×4=100(人)
(4)教师引导学生观察,比较两种解法有何异同。
启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4×25=25×4)这个等式说明了什么?
(5)你能再举出几个这样的例子吗?(学生举例)
(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)
(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)
(8)让学生用自己喜欢的方式表示乘法交换律: a×b=b×a。让学生说一说:这里的a、b可以是哪些数?
(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。
(10)我们学习哪些知识时用了乘法交换律?
(11)反馈练习:完成教材第35页“做一做”的第1题。
3、学习例2。
(1)出示例2:一共要浇多少桶水?
(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。
(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25×5)×2和25×(5×2)。
(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25×5)×2=25×(5×2)
(5)哪一种方法计算起来更简便?
(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。
(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?
(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
(9)用字母怎样表示?(a×b)×c=a×(b×c)
(10)反馈练习:完成教材第37页的第2题。
4、乘法交换律和乘法结合律的应用。
(1)出示:怎样简便就怎样算?
5×37×2 125×4×8×25
(2)思考:怎样计算简便?
(3)学生独立完成,教师巡视指导,指定学生上台板演。
(4)集体订正,指定学生说一说各题运用了什么运算定律。
5、反馈练习:教材第35页“做一做”的第2题。
6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
三、小结
学生小结本节课的学习内容。
教师引导学生回忆整节课的学习要点。
四、作业
《练习册》第14页第1课时的所有习题。
板书设计乘法交换律和乘法结合律
4×25=100(人)25×4=100(人)
4×25=25×4)a×b=b×a
(25×5)×2 25×(5×2)
=125×2 =25×10
=250(桶)=250(桶)
(25×5)×2=25×(5×2)
(a×b)×c=a×(b×c)