有理数的乘法课件

  教师的工作之一是编写自己的教案和课件,但是教师也应该清楚,这不是一项随意写写的工作。通过课堂反馈,可以得出学生的思维方式和逻辑,所以,什么样的教案和课件才能算是好的呢?以下是本页面关于“有理数的乘法课件”的内容,希望对您有所帮助!

有理数的乘法课件【篇1】

   教学目标

  1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

   教学建议

   (一)重点、难点分析

  本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

   (二)知识结构

   (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

有理数的乘法课件【篇2】

  积的符号 ;

  积的符号 。

  2完成下面填空:

  (2)(-10)×(- )×(-0.1)× 6 =________

  (3)(-10)×(- )×(-0.1)×(-6)=________

  (4)(-5)×(- )× 3 ×(-2)× 2=________

  (5)(-5)×(-8.1)× 3.14 × 0=________

  (1)8+(-0.5)×(-8)× (2)(-3)× ×(- )×(- )

  (3)(- )× 5 × 0 ×(- ) (5) (-6)×(+37) × (- )×(- )

  4.计算:(1)(-4)×(-7)×(-25) (2)(- )×8×(- )

  (3)(-0.5)×(-1)× ×(-8) (4)(-5)-(-5)× ×(-4).

  (5)(-3)×(7)×-3 ×(-6) (6)(-1)×(-7)+6×(-1)×

有理数的乘法课件【篇3】

  【教学目标】

  1.熟练有理数乘法法则;

  2.探索运用乘法运算律简化运算.

  【对话探索设计】

  〖探索1

  你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?

  〖阅读理解

  乘法交换律和结合律(见P40)

  〖探索2

  下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?

  (1)252004 (2) - 1999

  〖探索3

  运用运算律真的能节省时间吗?分两个大组,比一比:

  计算(-198)

  〖练习1

  运用乘法交换律和结合律简化运算:

  (1)1999125 (2) -1097

  〖探索4

  1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?

  2.如右图,你会用两种方法求长方形ABCD的面积吗?

  〖例题学习

  P41.例5

  〖作业

  P41.练习

  〖补充作业

  1.计算(注意运用分配律简化运算):

  (1)-6(100-); (2)(-12).

  (2)2(-3)4(-5)(-6)789(-10);

  (3) 2(-3)4(-5)(-6)0789(-10);

  4.下列各式的积(幂)是正的还是负的?为什么?

  (1)(-3)(-3)(-3)(-3)(-3).

  5.运用乘法交换律和结合律简化运算:

  (1)-98(-0.6); (2)-1999(-)()

  【补充练习】

  1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?

  2.运用分配律化简下列的式子:

  (1)例3x+9x+x (2)13x-20x+5x;

  =(3+9+1)x

  =13x;

  (3)12-9 (4)-z-7z-8z.

有理数的乘法课件【篇4】

   一、知识与能力

  掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

   二、过程与方法

  经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

   三、情感、态度、价值观

  培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

   四、教学重难点

   一、重点:熟练进行有理数的乘除运算

   二、难点:正确进行有理数的乘除运算

  预习导学

  通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律

   五、教学过程

  一、创设情景,谈话导入

  我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

  二、精讲点拨质疑问难

  根据预习内容,同学们回答以下问题:

  1.有理数的乘法法则:

  (1)同号两数相乘___________________________________

  (2)异号两数相乘_____________________________________

  (3)0与任何自然数相乘,得____

  2.有理数的乘法运算律:

  (1)乘法交换律:ab=_________

  (2)乘法结合律:(ab)c=_______

  (3)乘法分配律:(a+b)c=________

  3.有理数的除法法则:

  除以一个不等于0的数,等于乘这个数的__________

  比较有理数的乘法,除法法则,发现_________可能转化为__________

  三、课堂活动强化训练

  某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?

  注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结

有理数的乘法课件【篇5】

  ①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.

  通过对问题的变式探索,培养观察、分析、抽象的能力.

  通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.

  做一做 出示一组算式,请同学们用计算器计算并找出它们的.规律.

  例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________

  (3)(-5)(+3)=________;(4)(-5)(-3)=________

  例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________

  (3)(-6)(+4)=________;(4)(-6)(-4)=________

  想一想 你们发现积的符号与因数的符号之间的关系如何?

  总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数.

  两数相乘,同号得正,异号得负.

  想一想 两数相乘,积的绝对值是怎么得到的呢?

有理数的乘法课件【篇6】

  一、知识与能力

  掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

  二、过程与方法

  经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

  三、情感、态度、价值观

  培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

  四、教学重难点

  一、重点:熟练进行有理数的乘除运算

  二、难点:正确进行有理数的乘除运算

  预习导学

  通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律

  五、教学过程

  一、创设情景,谈话导入

  我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

  二、精讲点拨质疑问难

  根据预习内容,同学们回答以下问题:

  1.有理数的乘法法则:

  (1)同号两数相乘___________________________________

  (2)异号两数相乘_____________________________________

  (3)0与任何自然数相乘,得____

  2.有理数的乘法运算律:

  (1)乘法交换律:ab=_________

  (2)乘法结合律:(ab)c=_______

  (3)乘法分配律:(a+b)c=________

  3.有理数的除法法则:

  除以一个不等于0的数,等于乘这个数的__________

  比较有理数的乘法,除法法则,发现_________可能转化为__________

  三、课堂活动强化训练

  某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?

  注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结

  四、延伸拓展,巩固内化

  例2.(1)若ab=1,则a、b的关系为()

  (2)下列说法中正确的个数为( )

  0除以任何数都得0

  ②如果=-

  1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身

  A 1个B 2个C 3个D 4个

  (3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )

  A两数相等B两数互为相反数

  C两数互为倒数D两数相等或互为相反数

有理数的乘法课件【篇7】

   教学目标

  1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

  2.通过有理数的乘法运算,培养学生的运算能力;

  3.通过教材给出的行程问题,认识数学于实践并反作用于实践。

   教学重点和难点

  重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

  难点:有理数乘法法则的理解.

   课堂教学过程设计

   一、从学生原有认知结构提出问题

  1.计算(-2)+(-2)+(-2).

  2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

  3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[

  4.根据有理数加减运算中引出的新问题 主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有 理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

   二、师生共同研究有理数乘法法则

  问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

  解:3×2=6(厘米) ①

  答:上升了6厘米.

  问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

  解:-3×2=-6(厘米) ②

  答:上升-6厘米(即下降6厘米).

  引导学生 比较①,②得出:

  把一个因数换成它的相反数,所得的积是原来的积的相反数.

  这是一条很重要的结论,应用此结 论 ,3×(-2)=?(-3)×(-2)=?(学生答)

  把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

  把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

  此外,(-3)×0=0.

  综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数同0相乘,都得0.

  继而教师强调指出:

  “同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.

  用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.

  因此,在进行有理数乘法时,需要时时强调:先定符号后定值.

   三、运用举例,变式练习

  例 某一物体温度每小时上升a度,现在温度是0度.

  (1)t小时后温度是多少?

  (2)当a,t分别是下列各数时的结果:

  ①a=3,t=2;②a =-3,t=2;

  ②a=3,t=-2;④a=-3,t=-2;

  教师引导学生检验一下(2)中各结果是否合乎实际.

  课堂练习

  1.口答:

  (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9;

  (4)(-6)×1; (5)(-6)×(-1); (6) 6×(-1);

  (7)(-6)×0; (8)0×(-6);

  2. 口答:

  (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

  (4)-(-5); (5)1×a; (6)(-1)×a.

  这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负 数,也可以是正数或0.

  3.填空:

  (1)1×(-6)=______;(2)1+(-6)=____ ___;

  (3)(-1)×6=________;(4)(-1)+6=______;

  (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

  (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

  4.判断下列方程的解是正数还是负数或0:

  (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

   四、小结

  今天主要学习了有理数乘法 法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

   五、作业

  1.计算:

  (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

  (4)100×(-0.001); (5) -4.8×(-1.25); (6)-4.5×(-0.32).

  2.填空(用“>”或“<”号连接):

  (1)如果 a<0,b<0,那么 ab _______ _0;

  (2)如果 a<0,b<0,那么ab _______0;

  (3)如果a>0时,那么a ____________2a;

  ( 4)如果a<0时,那么a __________2a.

   探究活动

  问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

  答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1 ?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.

  道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.

有理数的乘法课件【篇8】

  教学目的:

  1、要求学生会进行有理数的加法运算;

  2、使学生更多经历有关知识发生、规律发现过程。

  有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

  2、知识形成:

  (引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

  情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

  情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

  发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

  同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6

  反数-2时,所得的积又会有什么变化?

  当然,当其中的一个因数为0时,所得的积还是等于0。

  两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数与零相乘,都得零。

  四、知识小结:

  本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

  六、每日预题:

  1、小学多学过哪些乘法的运算律?

  2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数的乘法课件【篇9】

  本课教材所处位置,是小学所学算术范围的第一次扩充,是算术到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础,

  基于上面对教材的分析,考虑到学生已有的认知结构、心理特征,结合《新课标》的要求,我确定以下教学目标:

  3、情感与态度目标:让学生乐于接受社会环境的教学信息,培养学生学习数学的兴趣

  为了突出重点,突破难点,因此本节课以设置问题、创设情境为主线,通过师生互相交流和协商的'方式展开教学,而在拓展延伸部分以学生的主动探究为主

  借用生活场景引出问题,从而围绕这一问题进行探索,教师启发引导,及时了解与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,生动形象地展示教学内容,不但可以提高学习效率和质量,而且容易激发学生的学习兴趣和积极性。

  为达到教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性、自觉性、积极性,本节课教学程序设计如下

  正数集合{ }; 负数集合{ } (设计意图:通过练习,起到复习知识的作用。这里主要复习:正负数的分类,为进一步学习做准备。)

  在日常生活和生产实践中,我们还会遇到很多具有相反意义的量,例如月球表面白天气温可高达零上123℃,夜晚可低到零下233℃,我们规定温度零上为正,则零上123℃记做123℃(或+123℃),零下233℃记做-233℃.同学们能举出一些具有相反意义的量吗?你能用正数、负数表示这些量吗?

  强调:①正、负数能表示具有相反意义的量,注意意义相反,其值任意;②不要混淆“意义相反”与“意义不同”(如上升3度与零下3度). (设计意图:从学生比较熟悉的身边的问题开始,能给学生一种轻松的学习氛围,易于学生学习新知识。)

  学生列举:0、-7、5.2、3、5、7、-7、-9、-10,

  议一议 你能说说这些数的特点吗?

  学生回答..................................................

  1,2,3,4„„叫做正整数;-1,-2,-3,-4„„叫做负整数;0叫做零。 1128,, +5.2(即5)„„叫做正分数; 253

  得出结论:正整数、负整数和零统称为整数;正分数和负分数统称为分数。

  整数正整数、负整数和零整数和分数统称有理数,

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:

  (1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:

  正整数整数零负整数 有理数正分数分数负分数

  (2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类

  我们曾经把所有正数组成的集合,叫做正数集合;所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

  (设计意图:通过对以上三部分的讲解,突出本节课的重点,使学生掌握有理数的分类和数的集合)

  练习:(1)把有理数6.4,-9,123,+10,,-0.021,-1,7,-8.5,334

  25,0,100按正整数、负整数、正分数、负分数分成四个集合。

  正整数集合

  正分数集合,负整数集合,负分数集合 

  整数集合11,+0.1,0,,-10,5,-0.7填入相32,分数集合

  正数集合,负数集合 (设计意图:及时巩固所学知识)

  在这一环节中,我将引导学生回顾本节课所学的内容,结合本节课的教学目标,归纳总结出本节课的知识要点:有理数的分类方法和数的集合;从而起到了对本节课巩固深化的作用

  (1)整数和分数统称为____;整数包括___、___ 和零,分数包括____和_____。

  正有理数集合,分数集合,负分数集合, 

  (设计意图:课外作业是整个学习环节中不可少的一环,课外作业的布置有利于发展学生知识整合的能力,使学生在完成作业的过程中尽可能综合学习并运用知识。)

有理数的乘法课件【篇10】

  各位专家,各位同仁:;大家好!;我说课的课题是北师大版《数学》七年级上册教材中的;

  一。教材分析;

  (一)教材的地位与作用;本课时既是有理数加减混合运算的自然延续,又是后面;

  (二)教学目标分析;

  1、知识与技能目标:借助实际情境,使学生理解有理;

  2、方法与过程目标:让学生经历有理数乘法法则的探;

  3、情感﹑态度与价值观目标:通过学习

  2.8. 有理数的乘法(第一课时)

  各位专家,各位同仁 :

  大家好!

  我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节"有理数的乘法".第一课时。我将从以下四个方面谈一谈这节课的教学设计。

  一。教材分析

  (一)教材的地位与作用

  本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解"类比和化归"这些重要数学思想,应用"不完全归纳法",发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。

  (二)教学目标分析

  1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。

  2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。

  3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。

  (三)教学重、难点及成因分析

  教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。

  教学难点定为:有理数的乘法法则的探索和对法则的理解。

  为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。

  二、教法、学法分析

  (一)、学情分析

  1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。

  2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。

  (二)、教法分析

  《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用"引导——探究法"组织教学。

  (三)、学法指导

  本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。

  三、教学过程分析

  我根据数学课程"倡导积极主动,勇于探索的学习方式"的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:

  1.直接提出问题:你能给出下列各式的结果吗?

  (1)2×3=____;(2)(-2)×(-3)=____;(3)2×(-3)=____;(4)0×(-4)=____. 这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。

  2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。

  (二)自主探究,归纳结论

  根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。

  1.出示问题 ,建立模型

  问题1. 议一议

  (-3)×4= -12

  (-3)×3=

  (-3)×2=

  (-3)×1=

  在出示问题,建立模型这一环节,先提出问题1. 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。1.把乘法转化成加法(链接);2.利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。

  问题2:①你知道(-3)×0的结果吗?

  ②如何用水位的变化来解释(-3)×0= 0 ?

  通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。

  问题3.认真观察上述5个算式,其中包含什么规律?

  此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。1.观察算式的左边,找出变化的因数和不变的因数;2.观察算式的右边,找出积的变化规律;3.要求学生在独立思考之后,将两边的变化规律总结成一个结论。即:一个因数不变,另一个因数每次减小1.算式右边的积每次增加-3.

  上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的问题4打下坚实的基础。

  2. 独立思考,探索规律

  问题4.猜一猜

  (-3)×(-1)=

  (-3)×(-2)=

  (-3)×(-3)=

  (-3)×(-4)=

  由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:"现在前"为负,"现在后"为正 .根据上述规定,我先让学生说一说这4个算式的实际意义,如(-3)×(-1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。

  这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。

  问题5.你能猜出 3×(-2)的结果,并解释理由吗?

  通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。

  本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。

  接着我引导学生进入第三步:归纳总结,得出法则。

  3、归纳总结,得出法则

  完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:

  由于学生对负数的意义理解不深,()计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。

  通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。

  (三)知识运用,加深理解

  1、运用法则进行计算

  在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘

  可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。

  2、运用法则解决实际问题

  有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,

  让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。

  两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。

  (四)变式训练,拓展思维。

  通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了"不同的人在数学上得到不同的发展"的理念。

  (五)回顾反思,感悟提升。

  在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。

  (六)布置作业,延伸知识。

  数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:

  分层设置作业,兼顾了不同学生的学习水平,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻"用数学的眼光"来观察生活。

  四、教学反思

  最后,对这节课我做了如下的反思:

  在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。

  我的说课到此结束,恳请各位专家批评,指正。谢谢大家!

分享

热门关注

2023会场方案(实用14篇)

会场方案

游泳正能量的句子短句精选

游泳正能量句子

抖音干净治愈短句晚安文案(精选52句)

晚安文案

《八角笼中》剧情详细介绍

八角笼中剧情

[精]人力资源部年终述职报告精选5篇

人力资源部年终述职

有理数和无理数的区别 有理数和无理数的类型总结

有理数和无理数的区别

有理数教案范文4篇

有理数教案

无理数和有理数的概念是什么

无理数和有理数

[荐]有理数的减法教学反思简短

有理数减法教学反思

有理数加法的教学反思简短6篇

有理数加法教学反思