电路实验报告(4篇)

2023-08-15 19:59:30 电路实验报告

  大家都说,实践后才会有收获,为了更加具体地去陈述一些数据。我们需要写一份报告,写报告大概是现职业人士最常见的一件事情。您是否了解“电路实验报告”让我们一起来了解,希望我的故事能够给您带来一些感动!

电路实验报告 篇1

  实验报告

  课程名称:___模拟电子技术实验____________指导老师:_

  _成绩:__________________ 实验名称: 实验13 基本运算电路 实验类型:__________ 同组学生姓名:__________

  一、实验目的和要求(必填)

  二、实验内容和原理(必填)

  三、主要仪器设备(必填)

  四、操作方法和实验步骤

  五、实验数据记录和处理

  六、实验结果与分析(必填)

  七、讨论、心得

  一。实验目的和要求

  1、研究集成运放组成的比例、加法和积分等基本运算电路的功能。

  2、掌握集成运算放大电路的三种输入方式。

  3、了解集成运算放大器在实际应用时应考虑的一些问题。

  4、理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响。二。实验内容和原理

  1、实现两个信号的反相加法运算。2.实现同相比例运算。3.用减法器实现两信号的减法运算。4.实现积分运算。5.用积分电路将方波转换为三角波。

  运放μa741介绍 :

  集成运算放大器(简称集成运放)是一种高增益的直流放大器,它有二个输入端。根据输入电路的不同,有同相输入、反相输入和差动输入三种方式。

  集成运放在实际运用中,都必须用外接负反馈网络构成闭环放大,用以实现各种模拟运算。

  μa741引脚排列:

  三。主要仪器设备

  示波器、信号发生器、晶体管毫伏表 运算电路实验电路板

  μa741、电阻电容等元件 四。操作方法和实验步骤 1.实现两个信号的反相加法运算 ?r frf v?v?vos1s2??r2 ?r1? 通过该电路可实现两个信号的反相加法运算。为了消除运放输入偏置电流及其漂移造成的运算误差,需在运放同相端接入平衡电阻r3,其阻值应与运放反相端地外接等效电阻相等,即要求r3=r1//r2//rf。

  测量出输入和输出信号的幅值,并记录示波器波形。

  注意事项:

  ①被加输入信号可以为直流,也可以选用正弦、方波或三角波信号。但在选取信号的频率和幅度时,应考虑运放的频响和输出幅度的限制。

  ②为防止出现自激振荡和饱和失真,应该用示波器监视输出电压波形。

  ③为保证电路正确,应对输出直流电位进行测试,即保证零输入时为零输出。2.实现同相比例运算

  电路特点是输入电阻比较大,电阻r同样是为了消除偏置电流的影响,故要求 r= rl//rf。?rf ? ?v?o ?1?r??vs 1?? 实验步骤:

  (1)测量输入和输出信号幅值,验证电路功能。(2)测出电压传输特性,并记录曲线。电压传输特性是表征输入输出之间的关系曲线,即 vo= f(vs)。

  同相比例运算电路的输入输出成比例关系。但输出信号的大小受集成运放的最大输出电压幅度的限制,因此输入输出只在一定范围内是保持线性关系的。电压传输特性曲线可用示波器来观察。

  (3)测量出输入和输出信号的幅值,并记录示波器波形。3.用减法器实现两信号的减法运算

  差分放大电路即减法器,为消除运放输入偏执电流的影响,要求r1=r2、rf=r3。v?rf?v? v?os2s1 r1 把实验数据及波形填入表格。实验注意事项同前。4.实现积分运算 1 vo? ? r1c vt ??s r1c ?vdt s t 电路原理:

  积分电路如上图所示,在进行积分运算之前,将图中k1闭合,通过电阻r2的负反馈作用,进行运放零输出检查,在完成零输出检查后,须将k1打开,以免因r2的接入而造成积分误差。

  k2的设置一方面为积分电容放电提供通路,将其闭合即可实现积分电容初始电压vc(0)=0。另一方面,可控制积分起始点,即在加入信号vs后,只要k2一打开,电容就将被恒流充电,电路也就开始进行积分运算。p.4 实验名称:____实验13 基本运算电路 姓名: 学号:

  实验步骤:

  用示波器观察输出随时间变化的轨迹,记录输入信号参数和示波器观察到的输出波形。

  (1)先检查零输出,将电容c放电;(2)将示波器按钮置于适当位置: ? 将光点移至屏幕左上角作为坐标原点; ? y轴输入耦合选用“dc”; ? 触发方式采用“norm”;

  (3)加入输入信号(直流),然后将k2打开,即可看到光点随时间的移动轨迹。5.用积分电路将方波转换为三角波

  电路如图所示。图中电阻r2的接入是为了抑制由iio、vio所造成的积分漂移,从而稳定运放的输出零点。在t

  实验步骤及数据记录:

  接三种情况加入方波信号,用示波器观察输出和输入波形,记录线性情况和幅度的变化。? tp>τ2

  五、实验数据记录与处理、实验结果与分析

  1、反相加法运算 p.5 实验名称:____实验13 基本运算电路 姓名: 学号:

  由于 ?rf?rf vo???v?v?rs1rs2??=-(10vs1+10vs2)?1? 2 理论上vo=11.2v,实际vo=9.90v,相对误差11.6%。

  误差分析:①检查零输入时,vo=0.5v左右(即使仿真也有几百微伏),并非完全为零,因此

  加上信号测量时会有 一定的误差。

  ②测量vo过程中,毫伏表示数时有时无,通过按压电路板与接线处都会使毫伏表示数产生一定的波动,可见电路本身并不稳定。本实验读数是毫伏表多次稳定在该数值时读取,但依然不可避免地由于电路元件实际值存在一定的误差范围、夹子连接及安放位置导致的读数不稳定、以及部分视差原因,导致误差的存在。

  2、同比例运算 20v ?rf?v?由于 o ? ? ? v s=11vo,理论上vo=5.61v,相对误差0.2%。误差分析同前。? 1?r1?? 0v-20v 0v v(vo)v(vi)0.4v 0.8v 1.2v 1.6v 2.0v 输出信号的大小受集成运放的最大输出电压幅度的限制,由仿真结果可见,输入输出在0-1.3v内是保持线性关系的。篇二:比例求和运算电路实验报告

  比例求和运算电路实验报告

  一、实验目的①掌握用集成运算放大器组成比例求和电路的特点和性能; ②学会用集成运算放大电路的测试和分析方法。

  二、实验仪器

  ①数字万用表;②示波器;③信号发生器。

  三、实验内容

  ⅰ。电压跟随器

  实验电路如图6-1所示: 理论值:ui=u+=u-=u 图6-1 电压跟随器

  按表6-1内容实验并记录。

  表6-1 ⅱ。反相比例放大电路 实验电路如图6-2所示: 理论值:(ui-u-)/10k=(u--uo)/100k且u+=u-=0故uo=-10ui 图6-2 反相比例放大器 1)按表6-2内容实验并测量记录:

  表6-2 发现当ui=3000 mv时误差较大。2)按表6-3要求实验并测量记录:

  表6-3 其中rl接于vo与地之间。表中各项测量值均为ui=0及ui=800mv 时所得该项测量值之差。

  ⅲ。同相比例放大器

  电路如图6-3所示。理论值:ui/10k=(ui-uo)/100k故uo=11ui 图6-3 同相比例放大电路 1)按表6-4和6-5实验测量并记录。

  表6-5 ⅳ。反相求和放大电路

  实验电路如图6-4所示。理论值:uo=-rf/r*(ui1+ui2)

  图6-4 反相求和放大器

  按表6-6内容进行实验测量,并与预习计算比较。

  表6-6 ⅴ。双端输入差放放大电路 实验电路如图6-5所示。

  理论值:uo=(1+rf/r1)*r3/(r2+r3)*u2-rf/r1*u1篇三:集成运放基本运算电路实验报告

  实验七 集成运放基本运算电路

  一、实验目的

  1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

  2、了解运算放大器在实际应用时应考虑的一些问题。

  二、实验原理

  集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

  理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

  开环电压增益 aud=∞ 输入阻抗 ri=∞ 输出阻抗 ro=0 带宽 fbw=∞ 失调与漂移均为零等。

  理想运放在线性应用时的两个重要特性:(1)输出电压uo与输入电压之间满足关系式 uo=aud(u+-u-)

  由于aud=∞,而uo为有限值,因此,u+-u-≈0。即u+≈u-,称为“虚短”。(2)由于ri=∞,故流进运放两个输入端的电流可视为零,即iib=0,称为“虚断”。这说明运放对其前级吸取电流极小。

  上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

  基本运算电路

  1、加法器是指输出信号为几个输入信号之和的放大器。用数学式子表示为: y = x1+ x2+ ?? + xn i1+ i2+ i3 +?? + in = if vi1vi2vv ??i3in= if r r r r 于是有v0 = ? rfr(vi1 +vi2 +vi3 +??+vin)如果各电阻的阻值不同,则可作为比例加法器,则有 rfrf?rf? v0???vi1?vi2vin? r2rn?r1?

  2、减法器是指输出信号为两个输入信号之差的放大器。用数学关系表示时,可写为:y = x1-x2 下图为减法器的基本结构图。由于 va = vb rfv?vava?v0 i2?i1??ifvb?vi2 r1rfr1?rf(已知r3 = rf)r 所以 v0?f?vi1?vi2? r1

  3、积分器是指输出信号为输入信号积分后的结果,用数学关系表示为: y? ?xdt t 右图是最基本的积分器的结构图。这里反馈网络的一个部分用电容来代替电阻,则有: ii?ic ? ? 上式表示了输出信号是输入信号积分的结果。

  4、微分器。微分是积分的反运算,微分器是指输出信号为输入信号微分运 dx 算的结果。用数学式子表示为: y? dt 下图示出微分器的基本原理图,利用“虚断”和和“虚短”的概念,可以建立以下关系式:

  三、实验设计要求

  要求根据实验原理设计反相加法运算电路、减法运算电路、积分运算电路,并设计数据记录表格。

  1、整理实验数据,画出波形图(注意波形间的相位关系)。

  2、将理论计算结果和实测数据相比较,分析产生误差的原因。

  3、分析讨论实验中出现的现象和问题。实验提示:实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

  四、实验参考方案 1.反相比例放大电路 2.反相加法运算电路 1)按下图连接实验电路。2)调节信号源的输出。用交流毫伏表或示波器测量输入电压vi及a、b点

  电压va和vb,及输出电压vo,数据记入表5-2。3.减法运算电路

  六、思考题

  为了不损坏集成块,实验中应注意什么问题?

  答;实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

  误差分析

  1、在测定时,我们只测量了一次,没有多次测量取平均值。可能会给实验带来一定的误差。2.由于实验器材的限制,手动调节,存在较大误差,3.本次试验使用了示波器,实验仪器自身会产生误差; 4.实验电路板使用次数较多,电阻值、电容值会有误差;篇四:实验六 比例求和运算电路实验报告

  《模拟电子技术》 实验报告 篇五:实验四 比例求和运算电路实验报告

  实验四 比例求和运算电路

  一、实验目的 1.掌握用集成运算放大器组成比例、求和电路的特点及性能。2.学会上述电路的测试和分析方法。

  二、实验仪器

  1、数字万用表 2.信号发生器 3.双踪示波器

  其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。

  三、实验原理

  (一)、比例运算电路 1.工作原理 a.反相比例运算,最小输入信号uimin等条件来选择运算放大器和确定外围电路元件参数。

  如下图所示。10kω

  输入电压ui经电阻r1加到集成运放的反相输入端,其同相输入端经电阻r2 接地。输出电压uo经rf接回到反相输入端。通常有: r2=r1//rf 由于虚断,有 i+=0,则u+=-i+r2=0。又因虚短,可得:u-=u+=0 由于i-=0,则有i1=if,可得: ui?u?u??uo ? r1rf uorf? aufur1 i由此可求得反相比例运算电路的电压放大倍数为: ??u ?rif?i?r1?ii? 反相比例运算电路的输出电阻为:rof=0 输入电阻为:rif=r1 b.同相比例运算 10kω

  输入电压ui接至同相输入端,输出电压uo通过电阻rf仍接到反相输入端。r2的阻值应为r2=r1//rf。根据虚短和虚断的特点,可知i-=i+=0,则有 u?? 且 u-=u+=ui,可得: r1 ?uo?ui r1?rfauf? r1 ?uo r1?rf uor?1?f uir1 同相比例运算电路输入电阻为: rif?输出电阻: rof=0 ui ?? ii 以上比例运算电路可以是交流运算,也可以是直流运算。输入信号如果是直流,则需加调零电路。如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。

  (二)求和运算电路 1.反相求和

  根据“虚短”、“虚断”的概念 rrui1ui2u ???o uo??(fui1?fui2)r1r2r1r2rf 当r1=r2=r,则 uo??rf(ui1?ui2)r

  四、实验内容及步骤

  1、。电压跟随电路

  实验电路如图1所示。按表1内容进行实验测量并记录。

  理论计算: 得到电压放大倍数:

  即:ui=u+=u-=u 图1 电压跟随器

  从实验结果看出基本满足输入等于输出。

  2、反相比例电路

  理论值:(ui-u-)/10k=(u--uo)/100k且u+=u-=0故uo=-10ui。实验电路如图2所示:

  图2:反向比例放大电路

  (1)、按表2内容进行实验测量并记录。表2:反相比例放大电路(1)

  (2)、按表3进行实验测量并记录。

  量值之差。

  测量结果:从实验数据1得出输出与输入相差-10倍关系,基本符合理论,实验数据(2)

  主要验证输入端的虚断与虚短。

  3、同相比例放大电路

  理论值:ui/10k=(ui-uo)/100k故uo=11ui。实验原理图如下:

  图3:同相比例放大电路

  (1)、按表4和表5内容进行实验测量并记录 表4:同相比例放大电路(1)

  4、反相求和放大电路

  理论计算:uo=-rf/r*(ui1+ui2)实验原理图如下:

  5、双端输入求和放大电路 理论值:uo=(1+rf/r1)*r3/(r2+r3)*u2-rf/r1*u1 实验原理图如下:

  五、实验小结及感想

  1.总结本实验中5种运算电路的特点及性能。电压跟随电路:所测得的输出电压基本上与输入电压相等,实验数据准确,误差很小。

  反向比例放大器,所测数据与理论估算的误差较小,但当电压加到3v时,理论值与实际值不符,原因是运算放大器本身的构造。

电路实验报告 篇2

  经过了一个学期的电路实验课的学习,学到了很多的新东西,发现了自己在电路理论知识上面的不足,让自己能够真正的把点亮学通学透。

  电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。

  首先,在对所学的电路理论课而言,实验给了我们一个很好的把理论应用到实践的平台,让我们能够很好的把书本知识转化到实际能力,提高了对于理论知识的理解,认识和掌握。

  其次,对于个人能力而言,实验很好的解决了我们实践能力不足且得不到很好锻炼机会的矛盾,通过实验,提高了自身的实践能力和思考能力,并且能够通过实验很好解决自己对于理论的学习中存在的一些知识盲点。

  对于团队协作与待人处事方面,实验让我们懂得了团队协作的重要性,教导我们以谦虚严谨的态度对待生活中的人与事,以认真负责的态度对待队友,提高了班级的凝聚力和战斗力,通过实验的积极的讨论,理性的争辩,可以让我们更加接近真理。

  实验中应注意的有几点。

  一,一定要先弄清楚原理,这样在做实验,才能做到心中有数,从而把实验做好做细。一开始,实验比较简单,可能会不注重此方面,但当实验到后期,需要思考和理解的东西增多,个人能力拓展的方面占一定比重时,如果还是没有很好的做好预习和远离学习工作,那么实验大部分会做的很不尽人意。

  二,在养成习惯方面,一定要真正的做好实验前的准备工作,把预习报告真正的学习研究过,并进行初步的实验数据的估计和实验步骤的演练,这样才能在真正实验中手到擒来,做到了然于心。

  不过说实话,在做试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完几次电路实验后,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了。

  在最后的综合实验中,我更是受益匪浅。我和同组同学做的是甲乙类功率放大电路,因为次放大电路主要是模拟电子技术的范畴,而自己选修专业与此有很大的联系,所以在做综合实验设计的时候,本着实践性,创新性,可行性和有一

  意义性的原则,选择了这个实验。实验本身的原理并不是很复杂,但那只针对有过相关学习的同学,对于我这样的初学者,对于实验原理的掌握本身就是一个挑战。通过翻阅有关书籍和查阅相关的资源,加深自己对功放的理解,通过EWB软件的仿真,比较实验数值与理论值之间的误差,最终输出正确而准确的波形和实验数据。

  总结:电路实验最后给我留下的是:严谨以及求实。能做好的事就要把它做到最好,把生活工作学习当成是在雕刻一件艺术品,真正把心投入其中,最终命运会为你证明你的努力不会白费。

电路实验报告 篇3

  实验目的

  1、了解日光灯电路的工作原理及提高功率因素的方法;

  2、通过测量日光灯所消耗的功率,学会瓦特表;

  3、学会日光灯的连线方法。

  实验仪器

  8W日光灯装置(灯管、镇流器、启辉器)一套,功率表,万用表,可调电容箱,开关,导线若干

  实验原理

  用P、S、I、V分别表示电路的有功功率、视在功率、总电流和电源电压。按定义电路的功率因数cosα=P/S=P/IU。由此可见,在电源电压且电路的有功功率一定时,电路的功率因数越高,它占用电源(或供电设备)的容量S就越少。

  日光灯电路中,镇流器是一个感性元件(相当于电感与电阻的串联),因此它是一个感性电路,切功率因数很低,约0.5-0.6。

  提高日光灯电路(其它感性电路也是一样)功率因素的方法是在电路的输入端并联一定容量的电容器。

  测试电路图

  实验数据表

  结论

  在一定范围内,随着电容的增大,功率因数也增大,当超过一定范围,功率因数随着电容的增大而减少。

电路实验报告 篇4

  一、实验目的

  1、学会互感电路同名端、互感系数以及耦合系数的测定方法。

  2、理解两个线圈相对位置的改变,以及用不同材料作线圈铁芯时对互感的影响。

  二、原理说明

  1、判断互感线圈同名端的方法

  (1)直流法

  如图19-1所示,当开关S闭合瞬间,若毫安表的指针正确,则可断定“1”,“3”为同名端;指针反偏,则 “1”,“4”为同名端。

  (2)交流法

  如图19-2所示,将两个绕组N1和N2的任意两端(如2,4端)联在一起,在其中的一个绕组(如N1)两端加一个低电压,用交流电压分别测出端电压U13、U12和U34。若U13是两个绕组端压之差,则1,3是同名端;若U13是两个绕组端压之和,则1,4是同名端。

  2、两线圈互感系数M的测定。

  在图19-2的N1侧施加低压交流电压U1,测出I1及U2。根据互感电势E2M≈U20=MI;可算得互感系数为

  M=U2I1

  3、耦合系数K的测定

  两个互感线圈耦合松紧的程度可用耦合系数K来表示

  K=M/L1L2

  先在N1侧加低压交流电压U1,测出N1侧开路时的电流I1;然后再在N2侧加电压U2,测出N1侧开路时的电流I2,求出各自的自感L1和L2,即可算得K值。

  三、实验设备

  1、直流电压、毫安表;

  2、交流电压、电流表;

  3、互感线圈、铁、铝棒;

  4、EEL-06组件(或EEL-18);100Ω/3W电位器,510Ω/8W线绕电阻,发光二极管。

  5、滑线变阻器;200Ω/2A(自备)

  四、实验内容及步骤

  1、分别用直流法和交流法测定互感线圈的同名端。

  (1)直流法

  实验线路如图19-3所示,将N1、N2同心式套在一起,并放入铁芯。U1为可调直流稳压电源,调至6V,然后改变可变电阻器R(由大到小地调节),使流过N1侧的电流不超过0.4A(选用5A量程的数字电流表),N2侧直接接入2mA量程的毫安表。将铁芯迅速地拔出和插入,观察毫安表正、负读数的变化,来判定N1和N2两个线圈的同名端。

  (2)交流法

  按图19-4接线,将小线圈N2套在线圈N2中。N1串联电流表(选0~5A的量程)后接至自耦调压器的输出,并在两线圈中插入铁芯。

  接通电路源前,应首先检查自耦调压器是否调至零位,确认后方可接通交流电源,令自耦调压器输出一个很低的电压(约2V左右),使流过电流表的电流小于1.5A,然后用0~20V量程的交流电压表测量U13,U12,U34,判定同名端。

  拆去2、4联线,并将2、3相接,重复上述步骤,判定同名端。

  2、按原理说明2的步骤测出U1,I1,U2,计算出M。

  3、将低压交流加在N2侧,N1开路,按步骤2测出U2,I1,U1。

  4、用万用表的R×1档分别测出N1和N2线圈的电阻值R1和R2。

  5、观察互感现象

  在图19-4的N1侧接入LED发光二极管与510Ω串联的支路。

  (1)将铁芯慢慢地从两线圈中抽出和插入,观察LED亮度的变化及各电表读数的变化,记录现角。

  (2)改变两线圈的相对位置,观察LED亮度的变化及仪表读数。

  (3)改用铝棒代替铁棒,重复(1),(2)的步骤,观察LED的亮度变化,记录现象。

  五、实验注意事项

  1、整个实验过程中,注意流过线圈N1的电流不超过1.5A,流过线圈N2的电流不得超过1A。

  2、测定同名端及其他测量数据的实验中,都应将小线圈N2套在大线圈N1中,并行插入铁芯。

  3、如实验室各有200Ω,2A的滑线变阻器或大功率的负载,则可接在交流实验时的N侧。

  4、实验前,首先要检查自耦调压器,要保证手柄置在零位,因实验时所加的电压只有2~3V左右。因此调节时要特别仔细,小心,要随时观察电流表的读数,不得超过规定值。

分享

热门关注

品牌专员简历(汇总3篇)

品牌专员简历

早安努力的句子(必备200句)

早安努力句子

人生早安心语59条

人生早安

中考物理专题报告推荐(集锦5篇)

中考物理专题报告推荐

安全生产的演讲比赛精选8篇

安全生产演讲比赛

小学生实验报告(4篇)

小学生实验报告

实验报告书写模版系列4篇

实验报告书写模版

实验实验报告模板

实验实验报告

精馏实验报告(3篇)

精馏实验报告

示波器实验报告5篇

示波器实验报告