行测数量:巧谈最大公约数与最小公倍数

  公约数:几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个称为这几个自然数的最大公约数。


  公倍数:几个自然数公有的倍数,叫做这几个自然数的公倍数。公倍数中最小的一个大于零的公倍数,叫做这几个自然数的公倍数。


  最大公约数与最小公倍数问题在日常生活中的应用非常广泛,故而成为公务员考试中比较常见的题型。这类问题一旦真正理解,计算起来相对简单。下面通过例题来加深大家对最大公约数与最小公倍数概念的理解。


  例题1:


  有两个两位数,这两个两位数的最大公约数与最小公倍数的和是91,最小公倍数是最大公约数的12倍,求这较大的数是多少?


  A.42   B.38   C.36   D.28


  【答案】D.解析:这道例题非常清晰的点明了主旨,就是最大公约数与最小公倍数问题,那么我们可以根据定义来解决。这两个数的最大公约数是91÷(12+1)=7,最小公倍数是7×12=84,故两数应为21和28.


  例题2:


  三根铁丝,长度分别是120厘米、180厘米、300厘米,现在要把它们截成相等的小段,每段都不能有剩余,那么最少可截成多少段?


  A.8   B.9   C.10   D.11


  【答案】C.解析:这道例题中隐含了最大公约数的关系。“截成相等的小段”,即为求三数的公约数,“最少可截成多少段”,即为求最大公约数。每小段的长度是120、180、300的约数,也是120、180和300的公约数。120、180和300的最大公约数是60,所以每小段的长度最大是60厘米,一共可截成120÷60+180÷60+300÷60=10段。


  例题3:


  一个小于200的数,除以24或36都有余数16,则这个数是(    )


  A.52   B.78   C.88   D.156


  【答案】C.解析:这道例题中隐含了最小公倍数的关系。“除以24或36都有余数16”,说明此数减去16,即为24和36的公倍数。24和36的最小公倍数为72,则此数应为72+16=88.

      行测更多解题思路和解题技巧,可参看 《2013年国家公务员考试一本通》2013年公务员考试技巧手册


行测真题 行测答案 行测答题技巧 行测题库 模拟试题
分享

热门关注

公务员行测常识题型怎么做

行测常识题技巧

行测常识判断答题技巧归纳

行测常识判断技巧

公务员行测如何提高做题速度

行测做题速度怎么提高

公务员行测常识题怎么准备

行测常识怎么准备

公务员行测考试题型分布

行测考试题型

行测数量关系技巧:巧解不定方程

数量关系技巧

行测数量关系技巧:巧解最不利问题

数量关系技巧

行测数量关系答题技巧:整除思想巧解题

行测答题技巧

行测数量关系技巧:比较构造法巧解问题

数量关系技巧

行测数量关系技巧:年龄问题的巧解方法

行测技巧