出国留学网专题频道等比数列求和公式栏目,提供与等比数列求和公式相关的所有资讯,希望我们所做的能让您感到满意!

等比数列求和公式是怎样的

等比数列求和公式 等比数列求和公式怎样的 是怎样的等比数列求和公式

  数学方面有公式计算可能朋友们都不知道是怎样的,比如我们常说的等比数列求和公式,今天出国留学网小编就带大家来了解下这方面的详细内容,想深入了解的朋友可以参考下。

  等比数列求和公式是怎样的

  公式:q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时,Sn=na1。

  1.等比数列求和公式是求等比数列之和的公式。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,常用G、P表示,这个常数叫做等比数列的公比。

  2.数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,…,n}上的函数。对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。等比数列可看作自然数n的“指数函数”。

  3.形如y=a^x(a>0且a≠1) (x∈R)的函数叫作指数函数。也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。它是定义在实数域上的单调、下凸、无上界的可微正值函数。 数学术语指数函数是数学中重要的函数。

  上述文章就是出国留学网小编要给大家分享的内容了,希望朋友们看完等比数列求和公式是怎样的后都能完全理解。关注我们,每天更新不一样的文章知识点。

  推荐阅读:

  等比数列求和公式推导过程是什么

  等比数列公式是什么 怎么计算

  等比数列前n项和公式推导过程(实用)

  等差数列求和公式怎么推导 有哪些推导方法

  圆面积计算公式的推导过程是怎样的

...

与等比数列求和公式相关的实用资料

等比数列前n项和公式推导过程(实用)

关于等比数列 等比数列求和公式 数列求和公式推导过程

  等比数列是数学中一个重要的知识点,那么你知道等比数列的求和公式及其推导过程吗?下面是由出国留学网编辑为大家整理的“等比数列前n项和公式推导过程(实用)”,仅供参考,欢迎大家阅读本文。

  等比数列前n项和公式

1

  公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。

  等比数列前n项和公式推导过程

  等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。

  推导如下:

  因为an=a1q^(n-1)

  所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1)

  qSn=a1*q^1+a1q^2+...+a1*q^n(2)

  (1)-(2)注意(1)式的第一项不变。

  把(1)式的第二项减去(2)式的第一项。

  把(1)式的第三项减去(2)式的第二项。

  以此类推,把(1)式的第n项减去(2)式的第n-1项。

  (2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。

  于是得到

  (1-q)Sn=a1(1-q^n)

  即Sn=a1(1-q^n)/(1-q)。

  拓展阅读:等比数列的性质

  ①在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2;

  ②若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列;

  ③在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk;

  ④q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q;

  ⑤等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1。

...

与等比数列求和公式相关的实用资料

等比数列求和公式推导过程是什么

关于等比数列 等比数列求和公式 数列求和公式推导

  等比数列是高中数学中一个十分重要的知识点,同时也是考试中一个常见的考点。下面是由出国留学网编辑为大家整理的“等比数列求和公式推导过程是什么”,仅供参考,欢迎大家阅读本文。

  等比数列前n项和公式

1.jpg

  公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。

  等比数列求和公式推导

  方法1:

  第一项:a1, 公比:q

  a1=a1

  a2=a1•q¬

  a3=a1•q¬2

  a4=a1•q¬3

  an=a1•q¬n-1

  an+1=a1•qn¬

  Sn+1=a1+a1•q¬+a1•q¬2+a1•q¬3+…+a1•q¬n-1+ a1•qn¬

  Sn+1=a1+q(a1•q¬+a1•q¬2+a1•q¬3+…+a1•q¬n-1)

  Sn+ a1•qn =a1+q•Sn

  Sn-q•Sn= a1-a1•qn

  Sn= a1•(1- qn)/(1-q)

  方法2:

  (1)Sn=a1+a2+a3+...+an(公比为q)

  (2)q*Sn=a1*q+a2*q+a3*q+...+an*q

  =a2+a3+a4+...+a(n+1)

  (3)Sn-q*Sn=a1-a(n+1)

  (4)(1-q)Sn=a1-a1*q^n

  (5)Sn=(a1-a1*q^n)/(1-q)

  (6)Sn=(a1-an*q)/(1-q)

  (7)Sn=a1(1-q^n)/(1-q)

  (8)Sn=k*(1-q^n)~y=k*(1-a^x)

  拓展阅读:等比数列求通项方法

2.jpg

...

与等比数列求和公式相关的实用资料

等比数列求和公式是什么

等比数列 等比数列求和公式 数列求和公式是什么

  数学是许多学生的难点,那么高中的等比数列求和公式是什么呢?快来和小编一起看看吧。下面是由出国留学网小编为大家整理的“等比数列求和公式是什么”,仅供参考,欢迎大家阅读。

  等比数列求和公式

  1.等比数列通项公式

  an=a1×q^(n-1);

  推广式:an=am×q^(n-m);

  2.等比数列求和公式

  Sn=n×a1(q=1);

  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)=a1(q^n-1)/(q-1)(q≠1);

  (q为公比,n为项数)。

  3.等比数列求和公式推导

  (1)Sn=a1+a2+a3+...+an(公比为q);

  (2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1);

  (3)Sn-q*Sn=a1-a(n+1);

  (4)(1-q)Sn=a1-a1*q^n;

  (5)Sn=(a1-a1*q^n)/(1-q);

  (6)Sn=(a1-an*q)/(1-q);

  (7)Sn=a1(1-q^n)/(1-q);

  (8)Sn=k*(1-q^n)~y=k*(1-a^x)。

  拓展阅读:等比数列的性质

  (1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。

  (2)在等比数列中,依次每k项之和仍成等比数列。

  (3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。

  (4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

  (5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

  (6)等比数列前n项之和。

  在等比数列中,首项A1与公比q都不为零。

  注意:上述公式中An表示A的n次方。

  (7)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

...

与等比数列求和公式相关的实用资料

等比数列求和公式有哪些

等比数列 求和公式 等比数列求和公式

  高中数学的等比数列求和公式还有哪些同学知道呢?如果不知道,请往下看。下面是由出国留学网小编为大家整理的“等比数列求和公式有哪些”,仅供参考,欢迎大家阅读。

  等比数列求和公式有哪些

  1)等比数列:a(n+1)/an=q, n为自然数。

  (2)通项公式:an=a1*q^(n-1);

  推广式: an=am·q^(n-m);

  (3)求和公式:Sn=n*a1(q=1)

  Sn=a1(1-q^n)/(1-q)

  =(a1-a1q^n)/(1-q)

  =a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)

  (前提:q不等于 1)

  (4)性质:

  ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

  ②在等比数列中,依次每 k项之和仍成等比数列.

  (5)“G是a、b的等比中项”“G^2=ab(G≠0)”.

  (6)在等比数列中,首项A1与公比q都不为零.

  注意:上述公式中A^n表示A的n次方。

  拓展阅读:等比数列求和公式怎么推导

  首项a1,公比q

  a(n+1)=an*q=a1*q^(n )

  Sn=a1+a2+..+an

  q*Sn=a2+a3+...+a(n+1)

  qSn-Sn=a(n+1)-a1

  S=a1(q^n-1)/(q-1)

  1、等比数列的意义:一个数列,如果任意的后一项与前一项的比值是同一个常数,即:A(n+1)/A(n)=q (n∈N*),这个数列叫等比数列,其中常数q 叫作公比。如:2、4、8、16......2^10 就是一个等比数列,其公比为2,可写为(A2)的平方=(A1)x(A3)。

  2、求和公式

  等比数列求和公式:Sn=n×a1 (q=1)

  Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)=a1(q^n-1)/(q-1)

  (q为公比,n为项数)

  等比数列求和公式推导:

  Sn=a1+a2+a3+...+an(公比为q)

  q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)

  Sn-q*Sn=a1-a(n+1)

  (1-q)Sn=a1-a1*q^n

  Sn=(a1-a1*q^n)/(1-q)

  Sn=(a1-an*q)/(1-q)

  Sn=a1(1-q^n)/(1-q)

  3、数学:数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

...

与等比数列求和公式相关的实用资料

推荐更多