出国留学网专题频道光合作用栏目,提供与光合作用相关的所有资讯,希望我们所做的能让您感到满意!

光合作用的化学方程式是什么怎么写

关于光合作用 光合作用的过程

  光合作用是植物进行的一个重要化学反应,对整个地球生物环境都产生积极影响。下面是由出国留学网编辑为大家整理的“光合作用的化学方程式是什么怎么写”,仅供参考,欢迎大家阅读本文。

  光合作用的定义

  通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

  光合作用的化学方程式

  总方程式6CO₂+6H₂O(光照、叶绿体)→C₆H₁₂O₆[(CH₂O)n]+6O₂。

  二氧化碳+水=光(条件)叶绿体(场所)→有机物(储存能量)+氧气。

  光合作用又分为光反应和暗反应

  1、光反应

  光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。光反应的场所是类囊体薄膜。

  2H2O—光→4[H]+O2

  ADP+Pi(光能,酶)→ATP

  总反应式:H2O+ADP+P+NADP+→O2+ATP+NADPH+H+

  2、暗反应

  暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和ATP的提供,故称为暗反应阶段。暗反应的场所为叶绿体基质。

  CO2+C5→(酶)2C3

  2C3+4([H])→(CH2O)+C5+H2O

  ATP(酶)→ADP+Pi

  总反应式:CO2+ATP+NADPH+H+→CH2O+ADP+Pi+NADP+

  拓展阅读:光合作用的意义

  将太阳能变为化学能

  植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。

  把无机物变成有机物

  植物通过光合作用制造有机物的规模是非常巨大的。据估计,植物每年可吸收CO2约合成约的有机物。地球上的自养植物同化的碳素,40%是由浮游植物同化的,余下60%是由陆生植物同化的。人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用。

  维持大气的碳-氧平衡

  大气之所以能经常保持21%的氧含量,主要依赖于光合作用(光合作用过程中放氧量约)。光合作用一方面为有氧呼吸提供了条件,另一方面,的积累,逐渐形成了大气表层的臭氧(O3)层。臭氧层能吸收太阳光中对生物体有害的强烈的紫外辐射。植物的光合作用虽然能清除大气中大量的CO2。

...

与光合作用相关的实用资料

光合作用的化学方程式是多少

光合作用 化学方程式 光合作用化学方程式

  生活中的氧气是光合作用的结果,有些好奇的同学便问光合作用的化学方程式是多少呢?下面是由出国留学网小编为大家整理的“光合作用的化学方程式是多少”,仅供参考,欢迎大家阅读。

  光合作用的化学方程式是什么

  光合作用的化学方程式:总反应式:CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2,能量变化:ADP+Pi+光能→ATP,(CH2O)表示糖类有关化学方程式光反应:物质变化:H2O→2H+1/2O2(水的光解)NADP++2e-+H+→NADPH能量变化:ADP+Pi+光能→ATP。

  拓展阅读:光合作用的反应式和反应条件

  1、6CO2+6H2O(光照、叶绿体)→C6H12O6(CH2O)+6O2。

  2、二氧化碳+水=光(条件)叶绿体(场所)→有机物(储存能量)+氧气。

  3、叶绿体是光合作用的场所叶绿体是双层膜的细胞器,内部分为基质和基粒,基质中含有多种酶,基粒由类囊体堆叠而成,类囊体中含有光合作用所需的色素和色素。

  4、光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。

  光合作用场所在哪

  光合作用场所在叶绿体,因为光合作用的两个阶段均发生在该细胞器中;

  光反应在类囊体薄膜,因为与此有关的酶分布在这里;

  暗反应在叶绿体基质,因为与此有关的酶分布在这里。

  光合作用,即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。

  光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

  光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。

  光合作用可以将光能转变成化学能,绿色植物在同化二氧化碳的过程中,把太阳光能转变为化学能,并蓄积在形成的有机化合物中。人类所利用的能源,如煤炭、天然气、木材等都是现在或过去的植物通过光合作用形成的。

...

与光合作用相关的实用资料

光合作用的化学方程式

光合作用化学方程式 光合作用的意义 关于光合作用

  想要了解光合作用的小伙伴,赶紧来瞧瞧吧!下面由出国留学网小编为你精心准备了“光合作用的化学方程式”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!

  光合作用的化学方程式

  总反应式:CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2,能量变化:ADP+Pi+光能→ATP,(CH2O)表示糖类有关化学方程式光反应:物质变化:H2O→2H+1/2O2(水的光解)NADP++2e-+H+→NADPH能量变化:ADP+Pi+光能→ATP。

  光合作用的意义

  1、将太阳能变为化学能

  植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为,约为人能所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色植物是一个巨型的能量转换站。

  2、把无机物变成有机物

  植物通过光合作用制造有机物的规模是非常巨大的。据估计,植物每年可吸收CO2约合成约的有机物。地球上的自养植物同化的碳素,40%是由浮游植物同化的,余下60%是由陆生植物同的。人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类的生存和发展。

  3、维持大气的碳-氧平衡

  大气之所以能经常保持21%的氧含量,主要依赖于光合作用(光合作用过程中放氧量约)。光合作用一方面为有氧呼吸提供了条件,另一方面,的积累,逐渐形成了大气表层的臭氧(O3)层。臭氧层能吸收太阳光中对生物体有害的强烈的紫外辐射。植物的光合作用虽然能清除大气中大量的CO2,但大气中CO2的浓度仍然在增加,这主要是由于城市化及工业化所致。

  整体而言,光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

  拓展阅读:光合作用和呼吸作用的区别和联系

  所发生的部位是不一样的,光合作用其实是需要有叶绿体的细胞才可以进行,而呼吸作用则是所有部位的活细胞都是能够进行的,因为活的细胞是需要有生命活动的,这就需要能量才能够支持,而呼吸就是能够提供这样的能量。产物也是不一样的,光合作用的产物其实就是有机物和氧,但是呼吸作用的产物则是二氧化碳和水。还有能量的转变也是不一样的,光合作用是能够制造有机物,能够将光转化成为能储存起来,但是呼吸作用却是相反的,它是需要分解有机物,从而为生命提供能量。至于二者之间的关系是相互依存的关系。

...

与光合作用相关的实用资料

光合作用的化学方程式是什么

光合作用 光合作用化学方程式 关于光合作用化学方程式

  想要了解光合作用化学方程式是什么,想要了解的小伙伴,赶紧来瞧瞧吧!下面由出国留学网小编为你精心准备了“光合作用的化学方程式是什么”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!

  光合作用的化学方程式是什么

  植物通过光合作用,吸收二氧化碳,生成葡萄糖和氧气,反应的化学方程式为:6CO2+6H2O(光照、酶、叶绿体)→C6H12O6(CH2O)+6O2

  二氧化碳+水=光(条件)叶绿体(场所)→有机物(储存能量)+氧气

  能量转化过程:光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能。

  植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。

  这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。

  光合作用定义

  绿色植物利用太阳的光能,同化二氧化碳和水制造有机物质并释放氧气的过程,称为光合作用。光合作用所产生的有机物主要是碳水化合物,并释放出能量。

  光合作用影响因素有哪些

  内部因素

  叶片发育和结构

  1)叶龄

  新长出的嫩叶,光合速率很低。不同部位叶片在不同生育期相对光合速率不同,光合速率随叶龄增长出现“低-高-低”规律。

  2)叶结构

  叶的结构,如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。叶的结构一反面收遗传基因控制,另一方面则受环境影响。

  光合产物的输出

  光合产物(如蔗糖)从叶片输出的速率会影响叶片的光合速率。形成原因:1)反馈抑制,2)淀粉粒的影响。

  外部因素

  1.光照

  (1)光强度对光合作用的影响

  光强度-光合速率曲线:

  黑暗条件下,叶片不进行光合作用,只有呼吸作用释放。随着光强度的增加,光合速率也会相应提高;当到达某一特定光强度时,叶片的光合速率等于呼吸速率,即二氧化碳吸收量等于二氧化碳释放量:当超过一定的光强,光合速率的增加就会转慢。当达到某一光强时,光合速率不再增加,即光饱和点。

  光合作用的光抑制:

  光照不足会成为光合作用的限制因素,光能过剩也会对光合作用产生不利影响。当光合机构接受的光能否超过所能利用的量时,会引起光合速率降低的现象。

  (2)光质对光合作用的影响

  太阳辐射中,只有可见光部分才能被光合作用利用,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。

  2.二氧化碳

  (1...

与光合作用相关的高考理综

光合作用的化学方程式及实质

光合作用化学方程式 光合作用实质 关于光合作用

  光合作用的化学方程式是怎样的,能产生什么物质变化?不知道的小伙伴看过来,下面由出国留学网小编为你精心准备了“光合作用的化学方程式及实质”仅供参考,持续关注本站将可以持续获取更多的资讯!

  光合作用的化学方程式

  1、总反应式:CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2(CH2O)表示糖类有关化学方程式光反应:物质变化:H2O→2H+1/2O2(水的光解)NADP++2e-+H+→NADPH能量变化:ADP+Pi+光能→ATP暗反应:物质变化:CO2+C5化合物→2C3化合物(二氧化碳的固定)2C3化合物+4NADPH+ATP→(CH2O)+C5化合物+H2O(有机物的生成或称为C3的还原)。

  2、能量变化:ATP→ADP+PI(耗能)能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成。

  光合作用的实质是什么

  植物光合作用的实质是绿色植物把水和二氧化碳经由叶绿体转化成存有能量的有机物(如淀粉等),并且释放出氧气的过程。光合作用可以概括出两个方面:一方面把简单的无机物转化成复杂的有机物,并且释放出氧气,这是物质的转化过程;另一方面是在把无机物转化成有机物的同时,把光能转变成为储存在有机物中的化学能,这是能量的转化过程。光合作用是一切生物生存、繁衍和发展的根本保障。绿色植物通过光合作用制造的有机物不仅能满足自身生长、发育和繁殖的需要,而且为生物圈中的其他生物提供了基本的食物来源,其产生的氧气是生物圈的氧气的来源。

  拓展阅读:光合作用的产物有哪些

  光合作用中最主要的产物是碳水化合物,即三碳途径与四碳途径形成的产物。其中包括单糖、双糖和多糖。光合作用的产物除碳水化合物外,还有类脂、有机酸、氨基酸和蛋白质等。

  光合作用产物一部分用来建造植物体和呼吸消耗外,大部分被输送到植物体的储藏器官储存起来。在不同条件下,各种光合产物的质和量均有差异,例如,氮肥多,蛋白质形成也多,氮肥少,则糖的形成较多,而蛋白质的形成较少;植物幼小时,叶子里蛋白质形成多,随年龄增加,糖的形成增多;不同光波如蓝紫光下则合成蛋白质较多,山区的小麦蛋白质含量高、质地好就是这个道理,在红光下则合成碳水化合物较多。所以光合作用产物不是固定不变的。在不同情况下,可以发生质和量的变化。

  推荐阅读:

  生长素的化学本质是什么

  

与光合作用相关的实用资料

光合作用的化学方程式及过程

光合作用的化学方程式 光合作用化学方程式 关于光合作用过程

  不知道如何写光合作用化学方程式的考生可以来这篇文章了解一下,下面由出国留学网小编为你精心准备了“光合作用的化学方程式及过程”,持续关注本站将可以持续获取更多的考试资讯!

  光合作用的化学方程式

  光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。总方程式CO2+H2O(光照、酶、叶绿体)→(CH2O[1])+O2把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能。

  植物通过光合作用,吸收二氧化碳,生成葡萄糖和氧气,反应的化学方程式为:6CO2+6H2O( 光照、酶、 叶绿体)→C6H12O6(CH2O)+6O2

  二氧化碳+水=光(条件) 叶绿体(场所)→有机物(储存能量)+氧气

  能量转化过程:光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能。

  植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。

  这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。

  光合作用是将太阳能转化为ATP中活跃的化学能再转化为有机物中稳定的化学能的过程!

  光合作用过程

  1、光反应

  光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。光反应的场所是类囊体薄膜。

  2H2O—光→4[H]+O2

  ADP+Pi(光能,酶)→ATP

  总反应式:H2O+ADP+P+NADP+→O2+ATP+NADPH+H+

  2、暗反应

  暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和ATP的提供,故称为暗反应阶段。暗反应的场所为叶绿体基质。

  CO2+C5→(酶)2C3

  2C3+4([H])→(CH2O)+C5+H2O

  ATP(酶)→ADP+Pi

  总反应式:CO2+ATP+NADPH+H+→CH2O+ADP+Pi+NADP+

  拓展阅读光合作用的意义

  1.光合作用通常也会制造淀粉等有机物,不仅是植物自身的生长发育还是需要的营养物质,同时也是人和动物的食物来源。

  2.光合作用通常也会转化成光能然后储存在有机物中,这些能量通常也是植物、动物和人体生命活动的而一些重要的能量来源。

  ...

与光合作用相关的实用资料

光合作用反应式及过程

光合作用反应式 光合作用过程 关于光合作用

  光合作用反应式是什么样子的?下面由出国留学网小编为你精心准备了“光合作用反应式及过程”,持续关注本站将可以持续获取更多的考试资讯!

  光合作用反应式

  光合作用的简单反应式:水+二氧化碳→有机物+氧,即CO2+H2O→(CH2O)+O2。

  光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。

  总反应式:CO2+H2O→(CH2O)+O2

  反应式的书写应注意以下几点:(1)光合作用有水分解,尽管反应式中生成物一方没有写出水,但实际有水生成;(2)“─→”不能写成“=”。

  对光合作用的概念与反应式应该从光合作用的场所——叶绿体、条件——光能、原料——二氧化碳和水、产物——糖类等有机物和氧气来掌握。

  光合作用过程

  1、光反应

  光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。光反应的场所是类囊体薄膜。

  2H2O—光→4[H]+O2

  ADP+Pi(光能,酶)→ATP

  总反应式:H2O+ADP+P+NADP+→O2+ATP+NADPH+H+

  2、暗反应

  暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和ATP的提供,故称为暗反应阶段。暗反应的场所为叶绿体基质。

  CO2+C5→(酶)2C3

  2C3+4([H])→(CH2O)+C5+H2O

  ATP(酶)→ADP+Pi

  总反应式:CO2+ATP+NADPH+H+→CH2O+ADP+Pi+NADP+

  拓展阅读光合作用的意义

  1.光合作用通常也会制造淀粉等有机物,不仅是植物自身的生长发育还是需要的营养物质,同时也是人和动物的食物来源。

  2.光合作用通常也会转化成光能然后储存在有机物中,这些能量通常也是植物、动物和人体生命活动的而一些重要的能量来源。

  3.同时光合作用还可以稳定大气中氧气和二氧化碳的含量相对稳定。

  然而总之光合作用通常可以是食物来源、能量的来源、同时还可以保持碳氧的平衡。

  可见光的照射下,将二氧化碳和水转化为有机物(主要是淀粉),并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是他们赖以生存的关键,而地球上的碳氧循环,光合作用是必不可少的。

  主要还是指把二氧化碳转化成有机物释放出氧气的过程,而对于生物界所有植物来说,,这个过程同样也是生存的挂件,因此也是地球上碳氧的一种循环,而光合作用的意义非常重大。

...

与光合作用相关的实用资料

2019高考生物一轮复习知识点:光合作用

高考理综 高考生物一轮复习 高考生物知识点

  本网整理了2019高考生物一轮复习知识点:光合作用,更多高考理综复习资讯本网站将不断更新,敬请及时关注。

  2019高考生物一轮复习知识点:光合作用

  合作用通常是指绿色植物(包括藻类)吸收光能,把二氧化碳(CO2)和水(H2O)合成富能有机物,同时释放氧的过程。小编给同学们整理了光合作用知识点,同学们赶快一起来阅读吧!

  名词:

  1、光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。

  语句:

  1、光合作用的发现:

  ①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。

  ②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。

  ③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。

  ④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。光合作用释放的氧全部来自来水。

  2、叶绿体的色素:

  ①分布:基粒片层结构的薄膜上。

  ②色素的种类:高等植物叶绿体含有以下四种色素。A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(;B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素

  3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。

  4、光合作用的过程:

  ①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)

  ②暗反应阶段:a、CO2的固定:CO2+C5→2C3b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C5

  5、光反应与暗反应的区别与联系:

  ①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。

  ②条件:光反应需要光、叶绿素等色素、酶,暗反应需要许多有关的酶。

  ③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。

  ④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。

  6、光合作用的意义:

  ①提供了物质来源和能量来源。

  ②维持大气中氧和二氧化碳含量的相对稳定。

  ③对生物的进化具有重要作用。总之,光合作用是生...

与光合作用相关的高考理综

初中生物《光合作用》教案

初中生物光合作用教案 光合作用教案

  《光合作用》教案

  教学目标

  一、知识方面

  1、使学生了解的发现过程。

  2、使学生了解叶绿体中色素的种类、颜色及其吸收的光谱;初步学习光合色素的提取方法及其在滤纸上的分布。

  3、掌握的概念、实质、总反应式、光反应、暗反应的具体过程、光反应与暗反应的区别与联系及的意义。

  4、应用所学的的知识,了解植物栽培与合理利用光能的关系。

  二、能力方面

  1、通过叶绿体色素的提取与分离实验,初步训练学生的实验室操作技能及相关仪器、药品的使用能力。

  2、通过探讨的氧来源,初步训练学生的实验设计能力。

  3、通过分析、讨论的光反应和暗反应具体过程,培养学生良好的思维品质。

  三、情感、态度、价值观方面

  1、通过学生对绿色植物的意义的理解,增强学生保护生态环境的意识。

  2、通过学生讨论“如何利用的原理提高作物产量”这一问题,加强对科学、技术、社会(STS)的关注。

  ④很多植物的叶片到秋天会变红,很多植物的花在一天的不同时间中也会呈现不同的颜色,学生知道这是什么的原因吗?

  本题涉及了植物细胞中色素及其比例变化的问题。一般来说,正常叶片的叶绿体中有两大类光合色素,其中叶绿素和类胡萝卜的分子比例为三比一,叶绿素a和叶绿素b也约三比一,叶黄素和胡萝卜的比为二比一。由于绿色的叶绿素比黄色的类胡萝卜素多,占优势,所以正常叶子总是呈现绿色。秋天、条件不正常或叶衰老时,由于叶绿素较易被破坏或先降解,数量减少,而类胡萝卜素比较稳定,所以叶片呈现黄色。

  至于红叶,不是叶片中叶绿体的色素造成的,而是由细胞液泡中的花色素引起的。因秋天温度降低,植物体内积累较多糖分以适应寒冷,体内的可溶性糖多了,就形成较多的花色素储存于液泡中。而花色素类似于酸碱指示剂,从碱性到酸性会呈现从蓝色到红色颜色渐变,具体而言是,pH=7~8 时呈淡紫色;pH<3时,呈红色;pH>11则呈蓝色。由于秋天时液泡中花色素增多,且细胞液pH值又偏酸性,因此叶子就变红了。

  不仅如此,花色素的颜色也会随环境中存在的不同的金属离子而改变,所以同一种花色素在不同的花中,或是同一种花由于种植的土壤不同,都能显出不同的颜色。

  学生可以回家做一个小实验,找一朵开红花的牵牛花,用手把花瓣使劲揉一揉,使花瓣细胞的液泡破裂,然后把这朵花放到洗衣粉水中(碱性环境),花瓣的颜色会由红色变为蓝色。这样学生就可以理解其中的原因了。

  第二课时

  1、引言

  教学时可从的总反应式入手,或从与初中阶段的总反应式的比较入手,可采用老师讲授,或学生讨论,或学生根据总反应式提出氧来源假设,即水中的氧是来源于水还是二氧化碳,还是共同来源于二者,条件好的班还可让学生想办法证明这些假设,以训练学生的实验设计能力。

  在搞清楚中的全部氧气来自于水中的氧后,让学生回忆初中生物学课本中的光合总反应式,并让学生对该反应式配平,要求尤其要求反应式左右氧原子的配平,通过这个工作,可使学生深切认识到,的反应物与产物中都需要水这一重要生物学事实。

与光合作用相关的初中教案

高一生物上册必修1《能量之源──光与光合作用》教案

高一生物上册教案 能量之源光与光合作用教案

  高一生物上册必修1《能量之源──光与光合作用》教案【一】

  教学准备

  教学目标

  【知识目标】

  (1)说出绿叶中色素的种类和作用。

  (2)说出叶绿体的结构和功能。

  【能力目标】

  (1)学会提取、分离绿叶色素的方法

  (2)通过探究实验,培养学生设计实验的能力、分析和解决问题的能力以及培养语言表达能力。

  【情感目标】

  (1)通过对叶绿体结构的学习,帮助学生树立结构和功能相统一的生物学观点

  教学重难点

  教学重点

  绿叶中色素的种类和作用。

  叶绿体的结构和功能。

  教学难点

  提取、分离绿叶色素实验操作、叶绿体结构与功能的统一性。

  教学过程

  【导入】利用白化苗的图片创设问题情境,引入本节第一部分:光合作用与细胞中的色素有关系。

  为什么白化苗很快就会死亡?

  为什么没有色素,植物就不能进行光合作用?

  【讲授】 带着这些问题我们一起来做《绿叶中色素的提取和分离》实验。

  绿叶中的色素究竟有哪些种类?它们分别又是什么颜色?以及各种色素在绿叶中的含量是否相同呢?带着这些问题我们一起来做《绿叶中色素的提取和分离》实验。

  教师讲解实验原理,指导实验程序。

  【活动】增加探究点

  a.你们所带的材料中,有无比菠菜更适合的实验材料?

  b.为何滤纸条的一端要剪去两角?

  c.为何层析液不能触及滤液细线?

  【活动】光合色素的作用

  屏幕上出示图片:将4种色素分别放在阳光和三棱镜之间,要求学生从连续光谱中观察明显变暗的区域,并分析原因。

  指导阅读教材上图5-10:叶绿素和类胡萝卜素的吸收光谱。

  【讲授】过渡

  这些光合色素分布在细胞的什么部位?直到1865年,德国植物学家萨克斯发现叶绿素集中在一个个更小的结构中,称为叶绿体。那么叶绿体有什么功能呢?

  【活动】阅读教材思考

  引导学生阅读教材上的材料分析:恩格尔曼的实验。思考:

  恩格尔曼的实验的结论是什么?

  恩格尔曼的实验方法有什么巧妙之处?

  【讲授】叶绿体结构

  屏幕上出示叶绿体的立体结构示意图,引导学生观察并思考:

  叶绿体有哪些结构组成?

  叶绿体有哪些结构特点是与其功能相适应?

  【练习】教材课后习题练习

  【作业】课后作业

  画色素在层析纸上的分布情况图;

  高一生物上册必修1《能量之源──光与光合作用》教案【二】

  教学准备

  教学目标

  1.说出绿叶中色素的种类和作用。

...

与光合作用相关的高中教案

推荐更多