立方差公式及其推导有哪些呢?感兴趣的小伙伴和小编一起看看吧。下面是由出国留学网小编为大家整理的“立方差公式及其推导有哪些”,仅供参考,欢迎大家阅读。
立方差公式及其推导
立方差公式也是数学中常用公式之一,在高中数学中接触该公式,且在数学研究中该式占有很重要的地位,甚至在高等数学、微积分中也经常用到。两个数的立方差,可以分解为一次多项式和二次多项式的乘积。
因式分解思想推导
a^3+b^3=a^3+a^2×b+b^3-a^2×b
=a^2(a+b)-b(a^2-b^2)=a^2(a+b)-b(a+b)(a-b)
=(a+b)[a^2-b(a-b)]=(a+b)(a^2-ab+b^2)
从正面推导的话,可以选用添加项的方法,
如
a³+b³=a³+a²b-a²b+b³=a²(a+b)-b(a²-b²)=a²(a+b)-b(a+b)(a-b)
=(a+b)[a²-b(a-b)]=(a+b)(a²-ab+b²)
a³-b³=a³-a²b+a²b-b³=a²(a-b)+b(a²-b²)=a²(a-b)+b(a+b)(a-b)
=(a-b)[a²+b(a+b)]=(a-b)(a²+ab+b²)
迭代法
我们知道:
0次方和的求和公式ΣN^0=N 即1^0+2^0+...+n^0=n
1次方和的求和公式ΣN^1=N(N+1)/2 即1^1+2^1+...+n^1=n(n+1)/2
2次方和的求和公式ΣN^2=N(N+1)(2N+1)/6 即1^2+2^2+…+n^2=n(n+1)(2n+1)/6——平方和公式,此公式可由同种方法得出,取公式(x+1)^3-x^3=3x^2+3x+1,迭代即得。
取公式:(X+1)^4-X^4=4×X^3+6×X^2+4×X+1
系数可由杨辉三角形来确定,
那么就得出:
(N+1)^4-N^4=4N^3+6N^2+4N+1…………⑴
N^4-(N-1)^4=4(N-1)^3+6(N-1)^2+4(N-1)+1…………⑵
(N-1)^4-(N-2)^4=4(N-2)^3+6(N-2)^2+4(N-2)+1…………⑶
…………
2^4-1^4=4×1^3+6×1^2+4×1+1…………(n)
于是⑴+⑵+⑶+……+(n)有
左边=(N+1)^4-1
右边=4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N
所以:
把以上这已经证得的三个公式代入,
4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N=(N+1)^4-1
得4(1^3+2^3+3^3+……+N^3)+N(N+1)(2N+1)+2N(N+1)+N=N^4+4N^3+6N^2+4N
移项后得 1^3+2^3+3^3+……+N^3=1/4 (N...