想要了解“分式方程教案”的原理或者相关技巧考虑看看这篇文章。每个老师在上课前会带上自己教案课件,因此老师会仔细规划每份教案课件重点难点。优秀的教案需要考虑到学生的身心健康。欢迎您随时参阅本文!
分式方程教案【篇1】
理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。
通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的“转化”思想。
培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤
一.创设情境,导入新课:
为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20__元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。
根据以上信息你能分别求出两次捐款的人数吗?
若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。
根据相等关系列方程为( )。
这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)
以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程
(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1
所以x=200是原方程的解。
分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.
怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。
本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。
1. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
分式方程教案【篇2】
教学目标
(一)知识与技能
理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。
(二)过程与方法
通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想。
(三)情感、态度与价值观
培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤
教学难点 :探索分式方程产生增根的原因。
教学过程
一.创设情境,导入新课:
为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20xx元,第二次捐款总额为21...