出国留学网专题频道数学考研复习资料栏目,提供与数学考研复习资料相关的所有资讯,希望我们所做的能让您感到满意!

2020考研数学高数暑期复习:常微分方程

考研复习资料 数学考研复习资料 暑假考研数学复习

  暑假是考研路上或不可缺的黄金时光,大家一定要在这个时间里面好好的抓紧时间复习,下面由出国留学网小编为你精心准备了“2020考研数学高数暑期复习:常微分方程”,持续关注本站将可以持续获取更多的考试资讯!

  2020考研数学高数暑期复习:常微分方程

  还在为找不到知识点而发愁?不用担心!小编在这里为大家整理“常微分方程”,帮助大家更好复习!

  1、了解微分方程及其解、阶、通解、初始条件和特解等概念;掌握变量可分离方程及一阶线性方程的解法。

  2、会用降阶法解y(n)=f(x),y″=f(x,y),y″=f(y,y')类的方程;理解线性微分方程解的性质和解的结构。

  3、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

  4、会解包含两个未知函数的一阶常系数线性微分方程组。重点是微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法。难点是由实际问题建立微分方程及确定定解条件。

  推荐阅读:

  2020考研数学高数暑期复习:单调有界收敛定理求极限

  2020考研数学高数暑期复习:三步破解考研数学证明题

  2020考研英语暑期语法复习:英语完成时态

  

与数学考研复习资料相关的考研数学

2020考研数学高数暑期复习:三步破解考研数学证明题

考研数学复习 数学考研复习资料 考研数学暑期复习资料

  考研如过独木桥,在千军万马中脱颖而出总是需要想象不到的汗水和努力,为了帮助考研小伙伴更好的复习,下面由出国留学网小编为你精心准备了“2020考研数学高数暑期复习:三步破解考研数学证明题”,持续关注本站将可以持续获取更多的考试资讯!

2020考研数学高数暑期复习:三步破解考研数学证明题

  在考研数学中,答题步骤十分重要,其中证明题的解答更是要有清晰的思维逻辑。

  第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。

  因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

  因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如2009年直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。

  第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

  再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为"逆推"。

  如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

  在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

  推荐阅读:

<...

与数学考研复习资料相关的考研数学

推荐更多