如若您对这个课题还有疑惑,或许可以试着阅读一下“极限课件”,那里可能会解答您的疑问。在正式上课之前,老师需要准备本学期的教学教案和课件,每位老师都要详细规划好教学内容和课件。教案是达到教学成功的关键要素。我们希望您能在本网站上找到所需的内容和资讯。
极限课件【篇1】
数列的极限 教学设计
西南位育中学 肖添忆
一、教材分析
《数列的极限》为沪教版第七章第七节第一课时内容,是一节概念课。极限概念是数学中最重要和最基本的概念之一,因为极限理论是微积分学中的基础理论,它的产生建立了有限与无限、常量数学与变量数学之间的桥梁,从而弥补和完善了微积分在理论上的欠缺。本节后续内容如:数列极限的运算法则、无穷等比数列各项和的求解也要用到数列极限的运算与性质来推导,所以极限概念的掌握至关重要。
课本在内容展开时,以观察n时无穷等比数列an列anqn,(|q|1)与an1的发展趋势为出发点,结合数n21的发展趋势,从特殊到一般地给出数列极限的描述性定义。在n由定义给出两个常用极限。但引入部分的表述如“无限趋近于0,但它永远不会成为0”、“不管n取值有多大,点(n,an)始终在横轴的上方”可能会造成学生对“无限趋近”的理解偏差。
二、学情分析
通过第七章前半部分的学习,学生已经掌握了数列的有关概念,以及研究一些特殊数列的方法。但对于学生来说,数列极限是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡的阶段。
由于已有的学习经验与不当的推理类比,学生在理解“极限”、“无限趋近”时可能产生偏差,比如认为极限代表着一种无法逾越的程度,或是近似值。这与数学中“极限”的含义相差甚远。在学习数列极限之前,又曾多次利用“无限趋近”描述反比例函数、指数函数、对数函数的图像特征,这又与数列中“无限趋近”的含义有所差异,学生往往会因为常数列能达到某一个常数而否定常数列存在极限的事实。
三、教学目标与重难点 教学目标:
1、通过数列极限发展史的介绍,感受数学知识的形成与发展,更好地把握极限概念的来龙去脉;
2、经历极限定义在漫长时期内发展的过程,体会数学家们从概念发现到完善所作出的努力,从数列的变化趋势,正确理解数列极限的概念和描述性定义;
3、会根据数列极限的意义,由数列的通项公式来考察数列的极限;掌握三个常用极限。教学重点:理解数列极限的概念
教学难点:正确理解数列极限的描述性定义
四、教学策略分析
在问题引入时着重突出“万世不竭”与“讲台可以走到”在认知上的矛盾,激发学生的学习兴趣与求知欲,并由此引出本节课的学习内容。在极限概念形成时,结合极限概念的发展史展开教学,让学生意识到数学理论不是一成不变的,而是不断发展变化的。数学的历史发展过程与学生的认知过程有着一定的相似性,学生在某些概念上的进展有时与数学史上的概念进展平行。比如部分学生的想法与许多古希腊的数学家一样,认为无限扩大的正多边形不会与圆周重合,它的周长始终小于其外接圆的周长。教师通过梳理极限发展史上的代表性观点,介绍概念的发展历程以及前人对此的一系列观点,能帮助学...