出国留学网专题频道考研数学易错知识点栏目,提供与考研数学易错知识点相关的所有资讯,希望我们所做的能让您感到满意!

2023年考研数学易错知识点内容分析盘点

考研 考研数学 考研数学知识点

  在考研的复习过程中,数学这一科的复习任务对于考生来说是一项十分艰巨的任务,很多考生都是在复习过程中在数学这一科上花费过多时间导致复习计划无法顺利完成,那么接下来小编就为大家带来2023年考研数学易错知识点内容分析盘点,一起来看看吧!

  一、几个易混淆的考研数学概念

  连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系是怎么样的?存在极 限,导函数连续,左连续,右连续,左极 限,右极 限,左导数,右导数,导函数的左极 限,导函数的右极 限。

  二、罗尔定理

  设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连通端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

  三、泰勒公式展开的应用专题

  相信很多同学看到泰勒公式就哆嗦,因为乍一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在搞明白以下几点后,这样的症状就能够消失了。1.什么情况下要进行泰勒展开;2.以哪一点为中心进行展开;3.把谁展开;4.展开到几阶?

  四、应用多次中值定理的专题:

  大部分的考研数学题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。比如经常去复习,那样对中值定理的题目早已没有那种刚学高数时的害怕之极。

  五、对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:

  这类考研数学题型几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。

考研初试各科分数组成:

  政治:

  马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分,满分100分。

  英语:<...

与考研数学易错知识点相关的考研数学

考研数学高数部分要注意的8个易错知识点

考研数学 考研数学易错知识点 考研数学复习资料

  出国留学网小编为大家提供考研数学高数部分要注意的8个易错知识点,一起来复习一下吧!希望大家好好掌握这些知识点,争取不失分!

  考研数学高数部分要注意的8个易错知识点

  准备参加2020考研的小伙伴你们复习的怎么样了,考研数学作为考研中一门较难的科目令很多考生非常头疼,但是很多专业又要求考考研数学,所以同学们还是要好好复习考研数学的。其实考研数学注重的是基础知识的积累,基础知识牢固的话在会后的提升及冲刺阶段才会比较轻松。本文为同学们整理了考研数学的易错点,每天花个10分钟来看一遍,避免在复习中出错,另外,建议考研的小伙伴们收藏,在考试前也可以看一下。

  1、函数在一点处极 限存在,连续,可导,可微之间关系。对于一元函数函数连续是函数极 限存在的充分条件。若函数在某点连续,则该函数在该点必有极 限。若函数在某点不连续,则该函数在该点不一定无极 限。若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续,可导与可微等价。而对于二元函数,只能又可微推连续和可导(偏导都存在) ,其余都不成立。

  2、基本初等函数与初等函数的连续性:基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

  3、极值点,拐点。驻点与极值点的关系:在一元函数中,驻点可能是极 值点,也可能不是极 值点,而函数的极 值点必是函数的驻点或导数不存在的点。注意极值点和拐点的定义、充分以及必要条件。

  4、夹逼定理和用定积分定义求极 限。这两种方法都可以用来求和式极 限,注意方法的选择。还有夹逼定理的应用,特别是无穷小量与有界量之积仍是无穷小量。

  5、可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

  6、泰勒中值定理的应用,可用于计算极 限以及证明。

  7、比较积分的大小。定积分比较定理的应.用(常用画图法) ,多重积分的比较,特别注意第二类曲线积分,曲面积分不可直接比较大小。

  8、抽象型的多元函数求导,反函数求导(高阶),参数方程的二阶导,以及与变限积分函数结合的求导。

  推荐阅读:

  2020考研数学复习规划

  

与考研数学易错知识点相关的考研数学

推荐更多