数学高数一直都是考研数学的大头,根据往年数学真题分析,还是有规律可循的。下面由出国留学网小编为你精心准备了“你不知道的出题规律及常考题型”持续关注本站将可以持续获取更多的考试资讯!
数学高数:你不知道的出题规律及常考题型
一、高数命题规律
1)侧重对数一、数三独有知识的考查。考研数学一有什么独有知识?大的模块有空间解析几何、多元积分(三重积分、曲线积分和曲面积分);数三独有的知识包括经济应用和级数(相对数二而言)。比如2014年真题中数一考了切平面方程,斯托克斯公式还有曲面积分;数三考了边际收益和幂级数求和展开。
2)考查考生综合运用所学知识分析问题、解决问题的能力。说白了就是应用题。比方上面提到的考研数三的经济应用,数二考到了形心质心。前者是导数的经济应用,后者是定积分的几何应用。
3)考点覆盖较全。这提示考生不要有侥幸心理,不要忽略次要考点,要做全面复习。这与把握重点是不矛盾的。这里可以把考研政治中的马克思主义哲学基本原理用过来:全面复习和把握重点的辩证统一。
二、常考题型
►向量代数与空间解析几何
1、理解向量的概念及其表示。
2、掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。
3、掌握平面方程和直线方程及其求法,会利用平面直线的相互关系解决有关问题。
4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
5、了解空间曲线的参数方程和一般方程;了解空间曲线在坐标平面上的投影,并会求其方程。
►微分方程
1.求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;
2.求解可降阶方程;
3.求线性常系数齐次和非齐次方程的特解或通解;
4.根据实际问题或给定的条件建立微分方程并求解;
►无穷级数
1.判定数项级数的收敛、发散、绝对收敛、条件收敛;
2.求幂级数的收敛半径,收敛域;
3.求幂级数的和函数或求数项级数的和;
4.将函数展开为幂级数(包括写出收敛域);
5.将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);
►多元函数的积分学
1.二重、三重积分在各种坐标下的计算,累次积分交换次序;
2.第一型曲线积分、曲面积分计算;
3.第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;
4.第二型(对坐标)曲面积分的计算,高斯公式及其应用;
...