三、多维随机变量及其分布
考试内容
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。
3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。
2.会求随机变量函数的数学期望。
五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫不等式。
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)。
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本
统计量 样本均值 样本方差和样本矩
分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算。
3.了解正态总体的常用抽样分布。
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念。
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性。
4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间。
八、假设检验
考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2.掌握单个及两个正态总体的均值和方差的假设检验。
推荐阅读:考研大纲 | 2015年考研数学大纲发布入口
考研大纲汇总 | 考研英语大纲 | 考研政治大纲 | 考研数学大纲 | 考研专业课大纲 |