人教版六年级数学上册《数学广角》教案

  第七单元:数学广角

  “鸡兔同笼”问题

  单元目标:

  1、知识与技能

  (1)、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  (2)、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

  2、过程与方法

  解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。

  3、情感、态度与价值观

  (1)、培养学生的逻辑推理能力。

  (2)让学生体会到数学问题在日常生活中的应用。

  单元重难点:

  尝试用不同的方法解决“鸡兔同笼”问题。

  一课时:“鸡兔同笼“问题

  教学目标:

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决“鸡兔同笼”问题。

  3、通过本节课的学习,知道与“鸡兔同笼”有关的数学史,对学生进行数学文化的熏陶和感染。

  教学重点:

  尝试用不同的方法解决“鸡兔同笼”问题。

  教学难点:

  通过对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  教学准备:

  故事视频、探讨表格。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的结果。

  (1)、列表:

  鸡 8 7 6 5 4 3

  兔 0 1 2 3 4 5

  脚 16 18 20 22 24 26

  (2)、假设法:

  假设笼子里都是鸡,那么就是8×2=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有10÷2=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)×4=26

  2x+8×4-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)×4=94

  2x+35×4-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  2×35=70(只)

  94-70=24(只)

  24÷(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、当堂测评

  1、完成教科书第115页做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书第115页做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

  6×8=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10÷(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、课堂总结

  通过本节课的学习,你能解决那些生活中的问题

  设计意图:

  1、“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

  2、猜测、列表、假设或方程解 等方法的学则根据学社的实际情况。

  3、练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

  教学后记:

  教案设计频道小编推荐:六年级上册数学教案 | 六年级上册数学教学计划

  教案设计频道小编推荐:六年级上册数学教案 | 六年级上册数学教学计划

分享
qqQQ
qzoneQQ空间
weibo微博
《人教版六年级数学上册《数学广角》教案.doc》
将本文的Word文档下载,方便收藏和打印
下载文档

热门关注

小学数学教案五年级范文

数学教案

小学数学老师教案范文2021

小学数学教案

小学语文教案模板范文2021

语文教案模板

小学生端午节主题班会教案

小学端午班会教案

母亲节主题班会教案六年级2021

母亲节班会教案六年级

一年级数学教案范本

数学教案范本

2020五年级上册数学教案

五年级教案

小学三年级数学下册教案模板

小学教案

小学四年级数学教案详案

小学数学教案详案

三年级上册数学教案范文

数学教案范文
付费下载
付费后无需验证码即可下载
限时特价:4.99元/篇 原价10元
微信支付

免费下载仅需3秒

1、微信搜索“月亮说故事点击复制

2、进入公众号免费获取验证码

3、输入验证码确认 即可复制

4、已关注用户回复“复制”即可获取验证码

微信支付中,请勿关闭窗口
微信支付中,请勿关闭窗口
×
温馨提示
支付成功,请下载文档
咨询客服
×
常见问题
  • 1、支付成功后,为何无法下载文档?
    付费后下载不了,请核对下微信账单信息,确保付费成功;已付费成功了还是下载不了,有可能是浏览器兼容性问题。
  • 2、付费后能否更换浏览器或者清理浏览器缓存后下载?
    更换浏览器或者清理浏览器缓存会导致下载不成功,请不要更换浏览器和清理浏览器缓存。
  • 3、如何联系客服?
    如已按照上面所说方法进行操作,还是无法复制文章,请及时联系客服解决。客服微信:ADlx86
    添加时请备注“文档下载”,客服在线时间为周一至周五9:00-12:30 14:00-18:30 周六9:00-12:30

  第七单元:数学广角

  “鸡兔同笼”问题

  单元目标:

  1、知识与技能

  (1)、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  (2)、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

  2、过程与方法

  解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。

  3、情感、态度与价值观

  (1)、培养学生的逻辑推理能力。

  (2)让学生体会到数学问题在日常生活中的应用。

  单元重难点:

  尝试用不同的方法解决“鸡兔同笼”问题。

  一课时:“鸡兔同笼“问题

  教学目标:

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决“鸡兔同笼”问题。

  3、通过本节课的学习,知道与“鸡兔同笼”有关的数学史,对学生进行数学文化的熏陶和感染。

  教学重点:

  尝试用不同的方法解决“鸡兔同笼”问题。

  教学难点:

  通过对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  教学准备:

  故事视频、探讨表格。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的结果。

  (1)、列表:

  鸡 8 7 6 5 4 3

  兔 0 1 2 3 4 5

  脚 16 18 20 22 24 26

  (2)、假设法:

  假设笼子里都是鸡,那么就是8×2=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有10÷2=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)×4=26

  2x+8×4-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)×4=94

  2x+35×4-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  2×35=70(只)

  94-70=24(只)

  24÷(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、当堂测评

  1、完成教科书第115页做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书第115页做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

  6×8=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10÷(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、课堂总结

  通过本节课的学习,你能解决那些生活中的问题

  设计意图:

  1、“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

  2、猜测、列表、假设或方程解 等方法的学则根据学社的实际情况。

  3、练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

  教学后记:

  教案设计频道小编推荐:六年级上册数学教案 | 六年级上册数学教学计划

  教案设计频道小编推荐:六年级上册数学教案 | 六年级上册数学教学计划

一键复制全文