出国留学网为您整理“中考数学《二次根式》知识点:二次根式的概念与取值范围”,欢迎阅读参考,更多精彩内容请继续关注本网站相关栏目发布的信息。
中考数学《二次根式》知识点:二次根式的概念与取值范围
二次根式的概念:
形如√a(a≥0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),
√(x-1) (x≥1)等是二次根式,而√(-2),√(-x2-7)等都不是二次根式。
二次根式取值范围:
1.二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。
知识点三:二次根式√a(a≥0)的非负性
√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即
√a≥0(a≥0)。
注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。
推荐阅读:
中考政策 | 中考状元 | 中考饮食 | 中考备考辅导 | 中考复习资料 |