等差数列的求和公式有什么?大家还清楚吗,不了解的话,快来小编这里瞧瞧。下面是由出国留学网小编为大家整理的“等差数列求和公式有什么”,仅供参考,欢迎大家阅读。
等差数列求和公式有什么
1、an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。
2、等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
拓展阅读:等差数列求和公式
等差数列求和公式是(首项+末项)×项数/2,数列求和对按照一定规律排列的数进行求和。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和等,属于高中代数的内容,在高考及各种数学竞赛中占据重要的部分。
以下介绍常见计算方法所需要的公式:
公式法:等差数列求和公式是(首项+末项)×项数/2。
错位相减法:适用于通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)。
倒序相加法:这是推导等差数列的前n项和公式时所用的方法,具体推理过程
Sn =a1+ a2+ a3+...... +an
Sn =an+ an-1+an-2...... +a1
上下相加得Sn=(a1+an)n/2
分组法:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
裂项相消法:适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。