初中是学生数学知识奠定基础的时期,那么初一数学知识点总结归纳重点呢?下面是由出国留学网小编为大家整理的“初一数学知识点总结归纳重点”,仅供参考,欢迎大家阅读。
初一数学知识点总结归纳重点
数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
绝对值
1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
有理数大小比较
1.有理数的大小比较
比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。
2.有理数大小比较的法则:
①正数都大于0;
②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小。
规律方法·有理数大小比较的三种方法:
(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.
(3)作差比较:
若a﹣b>0,则a>b;
若a﹣b<0,则a
若a﹣b=0,则a=b。
有理数的减法
有理数减法法则:减去一个数,等于加上这个数的相反数。 即:a﹣b=a+(﹣b)
方法指引:
①在进行减法运算时,首先弄清减数的符号;
②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)。
注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。
减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。
有理数的乘法
(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同零相乘,都得0。
(3)多个有理数相乘的法则:
①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
②几个数相乘,有一个因数为0,积就为0。
(4)方法指引
①运用乘法法则,先确定符号,再把绝对值相乘;
②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单。
解一元一次方程
1.解一元一次方程的一般步骤
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
使方程逐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。
一元一次方程的应用
1.一元一次方程解应用题的类型
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);
(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度)。
2.利用方程解决实际问题的基本思路
首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤:
(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系;
(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数;
(3)列:根据等量关系列出方程;
(4)解:解方程,求得未知数的值;
(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句。
直线、射线、线段
(1)直线、射线、线段的表示方法;
①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB。
②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。
(2)点与直线的位置关系:
①点经过直线,说明点在直线上;
②点不经过直线,说明点在直线外。
拓展阅读:数学考试答题技巧
1.从前向后,先易后难
通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。中间有难题出现时,可先跳过去,到最后攻它或放弃它。
先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。
2.规范答题,分分计较
对于数学分I、II卷的试题,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,各小题通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。
3.得分优先、随机应变
在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。
4.填充实地,不留空白
考试阅卷是连续性的流水作业,如果在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为该学生确实不行。
另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。
因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。
5.观点正确,理性答卷
不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。
6.字迹清晰,合理规划
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。
另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到 “前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。