2012年高考数学备考策略:分阶段 分层次 分专题

2012-04-19 21:19:15 高考


  2012年高考即将来临,  进行高考复习之前就必须要对数学高考试题的试卷结构、考点分布、题型分布、命题思路、解题要求、答题策略等等进行全面深入地了解,有针对性地制定有效的复习策略,再分阶段、分层次、分专题逐步实施。

  首先,无论从历史还是从现实上看,高考命题都具备较高稳定性的特点。因此,我们可以从历届高考试题中分析得出高考命题的许多信息。

  数学高考的题型有三种:

  一是选择题。选择题的解题要求是选判结果、不要过程。就是说,只需判断选择备选答案的对错,而省去了解题思路的探索、解题策略的制定、解题工具的选择以及解题过程的实施等细节,只判结果、不要过程。由此提出的解题要求是:选择题的解答一定要符合“快、准、巧”的要求,最忌讳的是“小题大做”。一道选择题的解答时间只有三分钟左右,超出三分钟时间即使能够得出正确答案也是罔然。因此仅仅停留在会解能解的层次上是远远不够的,选择题的答题要求是必须“快速、准确、巧妙”的选判正确答案,而千万别把小题弄成大题解答。

  二是填空题。

  填空题的解题要求是只要结果、不要过程,而最常见的错误是答案不够“完整、严密”。

  三是解答题。

  解答题的最大特点是综合性,你不能把什么题都拿来作为解答题。解答题的范围类型目前主要包括:第一,平面向量、三角函数;第二,概率(分布列)与统计(直方图);第三,空间向量、立体几何;第四,函数、导数综合;第五,解析几何;第六,数列、或不等式与函数或解析几何的综合。有两个新的命题趋势在被不少同学因各种原因或理由而忽视掉了。具体说:一是空间向量的综合运用,二是函数导数的综合运用。有些同学没有把这两部分内容全面深入地渗透到原有各个部分内容的解题中,而是把这两部分内容仍然孤立地与原有内容隔离开来。要清醒地认识到,空间向量和函数导数在原有知识内容的基础上,给我们带来了崭新的简洁实用的解题工具,理应引起我们的高度关注。解答题的解题要求是:解题思路清晰(为此可以适当跳步而保持思路的完整清晰),解题过程切忌过于琐碎;选择合适的解题工具;制定合理的解题策略;选择简洁的解题方法。

  一轮复习的目的是:全面全力夯实基础,切实掌握选择填空题的解题规律,在历次测验中确保基础部分得满分,也就是把该得的分数确实满分拿到手。在一轮复习中,所有同学都要集中全力闯过选择填空题的基础关,否则在高考中很难越过一百分。现实中,很多同学从一开始便投入到漫无目的的、五花八门的、各式各样的题海中。为了在一轮复习中达到此目的,基础稍差些的同学完全可以主动放弃大型的、复杂的综合体的演练,把节省下来的时间和精力再次投入到选择填空题上来,以此进一步夯实基础;而基础好一些的同学,也不要把太多的、主要的精力大面积地投入到解答题上来,而是要分专题、分阶段每天都少量地但是细致地深入地研究一两道大解答题,在解答题上慢慢地、逐步地积累解题经验和解题规律,切不可把摊子铺大。要知道解答题的解题经验和解题规律积累是一个逐步的、漫漫的由量变到质变的过程,坚持重于冲击。

  二轮复习的目的是:争取分数超过130分。在这个阶段主要是把解答题所涉及到的内容加以综合运用,同时进一步深化高考中常见的数形结合、分类讨论、转化与化归以及函数与方程等数学思想,其核心则是综合能力、创新能力的培养提高。采取的具体办法就是分阶段、分专题、逐一攻破,但最关键的还是在于长期的一点一滴的积累,不断地总结积累常见类型题的解题经验和解题规律。

  三轮复习的目的是:通过实战模拟,摸索、演练、积累有关答题节奏、答题策略等的经验以及应对出现意外考题的策略,此外还有考试心态的进一步调整等。分析造成考试分数出现大幅度下滑的客观的主要原因,一个是该拿的分数没拿到,二是非智力因素严重干扰。要知道非智力因素调整的好,可以让你发挥超出平时的水平;而非智力因素调整的不好,就会使让你发挥不出平时的水平。


 


高考语文复习资料 高考数学复习资料 高考英语复习资料 高考文综复习资料 高考理综复习资料
高考语文模拟试题 高考数学模拟试题 高考英语模拟试题 高考文综模拟试题 高考理综模拟试题
高中学习方法 高考复习方法 高考状元学习方法 高考饮食攻略 高考励志名言
分享

热门关注

高三下册数学知识点是什么

高三下册数学知识点

高二上册数学有哪些知识点

高二上册数学知识点

高三数学有哪些复习方法及经验

数学复习方法及经验

高三数学提升成绩的方法有哪些

高三数学提升成绩

高三下册数学知识点有哪些

高三下册数学

高考数学应该如何备考 备考方法有哪些

关于高考数学

高考数学提分技巧有哪些

高考数学提分

高考数学最后一题有多难 怎么备考高考数学

高考数学最后一题多难

2020年高考数学第一轮复习规划

高考数学

高三数学提分方法总结

高三数学方法