2013中考数学备考:6174猜想

2012-08-24 16:06:16 猜想

  暑假过后,新初三生们迎来了初中最重要的一年——初三。为方便2013年中考考生及家长查询相关信息,出国留学网中考频道特别搜集汇总了中考数学知识点以供参考:

1955年,卡普耶卡(D.R.Kaprekar)研究了对四位数的一种变换:任给出四位数k0,用它的四个数字由大到小重新排列成一个四位数m,再减去它的反序数rev(m),得出数k1=m-rev(m),然后,继续对k1重复上述变换,得数k2.如此进行下去,卡普耶卡发现,无论k0是多大的四位数,

只要四个数字不全相同,最多进行7次上述变换,就会出现四位数6174.例如:

k0=5298,  k1=9852-2589=7263,  k2=7632-2367=5265,  k3=6552-2556=3996,  
  k4=9963-3699=6264,  k5=6642-2466=4176,  k6=7641-1467=6174.

后来,这个问题就流传下来,人们称这个问题为"6174问题",上述变换称为卡普耶卡变换,简称 K 变换.

一般地,只要在0,1,2,...,9中任取四个不全相等的数字组成一个整数k0(不一定是四位数),然后从k0开始不断地作K变换,得出数k1,k2,k3,...,则必有某个m(m=<7),使得km=6174.

更一般地,从0,1,2,...,9中任取n个不全相同的数字组成一个十进制数k0(不一定是n位数),然后,从k0开始不断地做K变换,得出k1,k2,...,那么结果会是怎样的呢?现在已经知道的是:

n=2,只能形成一个循环:(27,45,09,81,63).例如取两个数字7与3,连续不断地做K变换,得出:36,27,45,09,81,27,...出现循环.

n=3,只能形成一个循环:(495).

n=4,只能形成一个循环:(6174).

n=5,已经发现三个循环:(53855,59994),(62964,71973,83952,74943),(63954,61974,82962,75933).

n=6,已经发现三个循环:(642654,...),(631764,...),(549945,...).

n=7,已经发现一个循环:(8719722,...).

n=8,已经发现四个循环:(63317664),(97508421),(83208762,...),(86308632,...)

n=9,已经发现三个循环:(864197532),(975296421,...),(965296431,...)

容易证明,对于任何自然数n>=2,连续做K变换必定要形成循环.这是因为由n个数字组成的数只有有限个的缘故.但是对于n>=5,循环的个数以及循环的长度(指每个循环中所包含数的个数)尚不清楚,这也是国内一些数学爱好者热衷于研究的一个课题.

  中考相关信息请关注出国留学网中考频道......



中考政策 中考状元 中考饮食 中考备考辅导 中考复习资料
分享

热门关注

初一上册数学知识点是什么

初一上册数学知识点

初一下期有哪些数学知识点

初一下期数学知识点

初中有哪些学习数学的方法

初中学习数学方法

初一上册数学知识点总结

初一上册数学

考试作文写作技巧指导

作文考试写作技巧

2020中考数学:备考的综合技巧

中考数学

2020中考备考:数学画图的技巧

中考备考

2020中考数学:拿高分的备考技巧

中考数学备考技巧

2020中考备考:初中数学该怎么攻略?

中考备考

2021中考数学备考十种解题方法

中考数学备考解题方法