出国留学网专题频道导数在研究函数中的应用教案栏目,提供与导数在研究函数中的应用教案相关的所有资讯,希望我们所做的能让您感到满意!

高中数学选修1-1《导数在研究函数中的应用》教案

数学选修1教案 导数在研究函数中的应用教案 高三数学

  高中数学选修1-1《导数在研究函数中的应用》教案

  目的要求:(1)弄清函数的单调性与导数之间的关系

  (2)函数的单调性的判别方法;注意知识建构

  (3)利用导数求函数单调区间的步骤

  (4)培养学生数形结合的能力。识图和画图。

  重点难点:函数单调性的判别方法是本节的重点,求函数的单调区间是本节的重点和难点。

  教学内容:liuxue86.com

  导数作为函数的变化率刻画了函数变化的趋势(上升或下降的陡峭程度),而函数

  的单调性也是对函数变化趋势的一种刻画,回忆:什么是增函数,减函数,增区间,减区间。

  思考:导数与函数的单调性有什么联系?

  函数的单调性的规律:

  思考:试结合函数 进行思考:如果 在某区间上单调递增,那么在该区间上必有 吗?

  例1. 确定函数 在那个区间上是增函数,哪个区间上是减函数。

  例2. 确定函数 在那些区间上是增函数?

  例3. 确定函数 的单调减区间。

  巩固:

  1.确定下列函数的单调区间:

  2.讨论函数 的单调性:

  (1)

  小结:函数单调性的判定方法,函数的单调性区间的求法。

  作业:

  1.设 ,则 的单调减区间是

  2.函数 的单调递增区间为

  3.二次函数 在 上单调递增,则实数a的取值范围是

  4.在下列结论中,正确的结论共有: ( )

  ①单调增函数的导函数也是增函数 ②单调减函数的导函数也是减函数

  ③单调函数的导函数也是单调函数 ④导函数是单调的,则原函数也是单调的

  A.0个 B.2个 C.3个 D.4个

  5.若函数 则 的单调递减区间为

  单调递增区间为

  6.已知函数 在区间 上为减函数,则m的取值范围是

  7.求函数 的递增区间和递减区间。

  8.确定函数y= 的单调区间.

  9.如果函数 在R上递增,求a的取值范围。

  §1.3.1单调性(2)

  目的要求:(1)巩固利用导数求函数的单调区间

  (2)利用导数证明函数的单调性

  (3)利用单调性研究参数的范围

  (4)培养学生数形结合、分类讨论的能力,养成良好的分析问题解决问题的能力

  重点难点:利用图像及单调性区间研究参数的范围是本节的重点难点

  教学内容:

  1.回顾 函数的导数与单调性之间的关系

  2.板演 求下列函数得单调区间:

  教案设计频道小编推荐:

与导数在研究函数中的应用教案相关的高中教案

推荐更多