出国留学网专题频道直角三角形课件栏目,提供与直角三角形课件相关的所有资讯,希望我们所做的能让您感到满意!

解直角三角形课件(推荐6篇)

直角三角形课件

  经过栏目小编精心整理,“解直角三角形课件”相关内容已为您准备好,希望对您有所帮助。每位教师都需要编写教案和课件,但其中的知识点设计是至关重要的。出色的教学课件可以激发学生的主动参与和学习热情。如果您觉得我们的网站对您有价值,请记得收藏并关注我们哦!

解直角三角形课件 篇1

   一、教材分析

  (一)、教材的地位与作用

  本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。

  (二)教学重点

  本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。

  (三)、教学难点

  由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。

  (四)、教学目标分析

  1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。

  2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。

  3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。

   二、教法设计与学法指导

  (一)、教法分析

  本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。

  教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。

  (二)、学法分析

  通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况...

与直角三角形课件相关的实用资料

解直角三角形课件

直角三角形课件

  在给学生授课之前,教师会提前准备好教案课件,里面的内容都是由教师自己完善的。编写教案时必须考虑如何整合和利用教学资源,这样才能形成优秀的教案课件。那么,什么样的教案才能称之为好教案课件呢?通过本文的阅读,我们对于“解直角三角形课件”有了更加深入的认识,建议大家将本页和本站收藏起来,方便今后查阅。

解直角三角形课件 篇1

  教学建议

  1.知识结构:

   本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.

  2.重点和难点分析:

   教学重点和难点:直角三角形的解法.

  本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.

  3. 深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.

  锐角三角函数的定义:

  实际上分别给了三个量的关系:a、b、c是边的长、、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.

  当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.

  如:已知直角三角形ABC中,,求BC边的长.

   

  画出图形,可知边AC,BC和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式

  ,

  由于,它实际上已经转化了以BC为未知数的代数方程,解这个方程,得

  .

  即得BC的长为.

  又如,已知直角三角形斜边的长为35.42cm,一条直角边的长29.17cm,求另一条边所对的锐角的大小.

   

  画出图形,可设中,,于是,求的大小时,涉及的三个元素的关系是

  也就是

  这时,就把以为未知数的代数方程转化为了以为未知数的方程,经查三角函数表,得

  .

  由此看来,表达三角函数的定义的4个等式,可以转化为求边长的方程,也可以转化为求角的方程,所以成为解三角形的重要工具.

  4. 直角三角形的解法可以归纳为以下4种,列表如下:

   

  5. 注意非直角三角形问题向直角三角形问题的转化

  由上述(3)可以看到,只要已知条件适当,所有的直角三角形都是可解的.值得注意的是,它不仅使直角三角形的计算问题得到彻底的解决,而且给非直角三角形图形问题的解决铺平了道路.不难想到,只要能把非直角三角形的图形问题转化为直角三角形问题,就可以通过解直角三角形而获得解决.请看下例.

  例如,在锐角三角形ABC中,,求这个三角形的未知...

与直角三角形课件相关的实用资料

推荐更多