出国留学网专题频道一元三次方程栏目,提供与一元三次方程相关的所有资讯,希望我们所做的能让您感到满意!

怎么解一元三次方程 一元三次方程的解法有哪些

解一元三次方程 一元三次方程解法 一元三次方程

  一元三次方出一直是同学们比较难过的一个坎,很多同学不知道该如何解开它,以下是由出国留学网编辑为大家整理的“怎么解一元三次方程 ”,仅供参考,欢迎大家阅读。

  怎么解一元三次方程

  一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。

  一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:

  (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

  (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

  (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为

  x^3=(A+B)+3(AB)^(1/3)x,移项可得

  (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

  (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

  (6)A+B=-q,AB=-(p/3)^3

  (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

  (8)y1+y2=-(b/a),y1*y2=c/a

  (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

  (10)由于型为ay^2+by+c=0的一元二次方程求根公式为

  y1=-(b+(b^2-4ac)^(1/2))/(2a)

  y2=-(b-(b^2-4ac)^(1/2))/(2a)

  可化为

  (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)

  y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)

  将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得

  (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)

  B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)

  (13)将A,B代入x=A^(1/3)+B^(1/3)得

  (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

  式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

  拓...

与一元三次方程相关的实用资料

一元三次方程的解法有哪些

一元三次方程 一元三次方程解法 方程的解法有哪些

  三次方程绝非好解的,很多方程,都是经过精心设计,各项系数配合得很好,求解过程才变得容易。以下是由出国留学网编辑为大家整理的“一元三次方程的解法有哪些”,仅供参考,欢迎大家阅读。

  一元三次方程的一般形式ax^3+bx^2+cx+d=0是很难解的!数学上要用换元法,把原方程换成一个“缺项”的方程,也就是新方程中没有二次项的。设x=y-b/3a,将它代进去,就可以得到一个新的方程y^3+py+q=0,这个方程最重要的是没有二次项,至于p和q是多少,你可以代进去算。

  对于这个y^3+py+q=0,可用待定系数法。实际上,求出的方程的根y将会有y=A+B的形式,A和B为待定系数,y^3=(A+B)^3=A^3+B^3+3AB(A+B),整理得到

  y^3-3AB(A+B)-(A^3+B^3)=0

  把这两道方程比较,可得到一个二元方程组

  -3AB=p

  -(A^3+B^3)=q

  把A和B解出来,由于上面已经设y=A+B,所以就可以把y解出来。而最初设x=y-b/3a,就可以把x解出来,这是原方程的解。

  一般形式

  一元三次方程的一般形式是 ax^3+bx^2+cx+d=0 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 如果作一个横坐标平移 y=x+b/3a,那么我们就可以把方程的二次项消去。所以我们只要考虑形如 x^3=px+q 的三次方程。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:

  (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

  (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

  (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得

  (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

  (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

  (6)A+B=-q,AB=-(p/3)^3

  (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

  (8)y1+y2=-(b/a),y1*y2=c/a

  (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

  (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=...

与一元三次方程相关的实用资料

一元三次方程快速解法有什么

一元三次方程 关于一元三次方程的解法 一元三次方程快快速解法

 在日常的学习生活中,同学们对一元二次方程都有些自顾不暇,更不要说什么一元三次方程了。但是总有一些同学不畏难题,直面挑战,于是他们会问一元三次方程的解法有什么呢?下面是由出国留学网小编为大家整理的“一元三次方程快速解法有什么”,仅供参考,欢迎大家阅读。

  一元三次方程解法有什么

  一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。

  一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:

  (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

  (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

  (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为

  x^3=(A+B)+3(AB)^(1/3)x,移项可得

  (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

  (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

  (6)A+B=-q,AB=-(p/3)^3

  (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

  (8)y1+y2=-(b/a),y1*y2=c/a

  (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

  (10)由于型为ay^2+by+c=0的一元二次方程求根公式为

  y1=-(b+(b^2-4ac)^(1/2))/(2a)

  y2=-(b-(b^2-4ac)^(1/2))/(2a)

  可化为

  (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)

  y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)

  将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得

  (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)

  B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)

  (13)将A,B代入x=A^(1/3)+B^(1/3)得

  (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

  式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三...

与一元三次方程相关的实用资料

一元三次方程快速解法有哪些

一元三次方程解法 一元三次方程的解法 关于一元三次方程

  一元三次方程的具体解答方法是什么,一共有几种?想知道的小伙伴看过来,下面由出国留学网小编为你精心准备了“一元三次方程快速解法有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯!

  一元三次方程快速解法有哪些

  1、因式分解法

  因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。

  例如:解方程x^3-x=0

  对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。

  一种换元法

  对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。

  令x=z-p/3z,代入并化简,得:z^3-p/27z+q=0。再令z^3=w,代入,得:w^2-p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。

  2、卡尔丹公式法

  特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。

  判别式Δ=(q/2)^2+(p/3)^3。

  卡尔丹公式

  X1=(Y1)^(1/3)+(Y2)^(1/3);

  X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;

  X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,

  其中ω=(-1+i3^(1/2))/2;

  Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。

  标准型一元三次方程aX ^3+bX ^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

  令X=Y—b/(3a)代入上式。

  可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。

  拓展阅读:一元三次韦达定理公式

  一元三次方程的韦达定理:设方程为aX^3+bX^2+cX+d=0,则有X1·X2·X3=-d/a;X1·X2+X1·X3+X2·X3=c/a; X1+X2+X3=-b/a。韦达定理说明了一元二次方程中根和系数之间的关系,还可以推广说明一元n次方程根与系数的关系。

  韦达定理的作用

  韦达定理主要应用在讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题。根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。

  韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

  推荐阅读:

 

与一元三次方程相关的实用资料

如何解一元三次方程

一元三次方程 一元三次方程解答 关于一元三次方程

  一元三次方程怎么解,有什么公式方法?需要了解的考生看过来,下面由出国留学网小编为你精心准备了“如何解一元三次方程”仅供参考,持续关注本站将可以持续获取更多的资讯!

  如何解一元三次方程

  一元三次方程的公式解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。两种公式法都可以解标准型的一元三次方程。

  用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。

  卡尔丹公式法:特殊型一元三次方程X^3+pX+q=0(p、q∈R)。

  判别式Δ=(q/2)^2+(p/3)^3。

  卡尔丹公式X1=(Y1)^(1/3)+(Y2)^(1/3);

  X2=(Y1)^(1/3)ω+(Y2)^(1/3)ω^2;

  X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,

  其中ω=(-1+i3^(1/2))/2;

  Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。

  标准型一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

  令X=Y—b/(3a)代入上式。

  可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。

  卡尔丹判别法:当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根;

  当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根;

  当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。

  一元三次方程

  只含有一个未知数(即“元”),并且未知数的最高次数为3(即“次”)的整式方程叫做一元三次方程(英文名:cubic equation of one unknown)。一元二次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax^3+bx^2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于用卡尔丹公式解题存在复杂性,相比之下,盛金公式解题更为直观,效率更高。

  拓展阅读:一元三次方程求根公式

  1、公式法

  若用A、B换元后,公式可简记为:

  x1=A^(1/3)+B^(1/3);

  x2=A^(1/3)ω+B^(1/3)ω^2;

  x3=A^(1/3)ω^2+B^(1/3)ω。

  2、判别法

  当△=(q/2)^2+(p/3)^3>0时,有一个实根和一对个共轭虚根;

  当△=(q/2)^2+(p/3)^3=0时,有三个实根,其中两个相等;

  当△=(q/2)^2+(p/3)^3<0时,有三个不相等的实根。

  推荐阅读:

 ...

与一元三次方程相关的实用资料

推荐更多