中考数学知识讲解:二次函数与图形变换

  出国留学网为您整理“中考数学知识讲解:二次函数与图形变换”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。

  中考数学知识讲解:二次函数与图形变换

  图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。笔者认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。

  1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。

  例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____

  分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x- 2)2-2。

  2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。

  二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

  二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

  例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。

  分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2+4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x+1)2-4。

  3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。

  例3.将抛物线y=x2-2x+3绕其顶点旋转180°,则所得的抛物线的函数解析式为________

  分析:y=x2-2x+3=(x-1)2+2中,a值为1,顶点坐标为(1,2),抛物线绕其顶点旋转180°后,a值为-1,顶点坐标不变,故解析式为y=-(x-1)2+2。

  推荐阅读:

  中考数学知识讲解:二次函数顶点坐标公式

  中考数学知识讲解:二次函数的一般形式

  中考数学知识讲解:二次函数的判定和实际应用

  中考数学知识梳理:二次函数的解析式

  中考数学知识梳理:二次函数y=ax^2的性质


中考政策 中考状元 中考饮食 中考备考辅导 中考复习资料
分享

热门关注

初一上册数学知识点是什么

初一上册数学知识点

初一下期有哪些数学知识点

初一下期数学知识点

初中有哪些学习数学的方法

初中学习数学方法

初一上册数学知识点总结

初一上册数学

考试作文写作技巧指导

作文考试写作技巧

初中数学二次函数知识点总结

初中数学

初三数学二次函数知识点有哪些

二次函数知识点

初三数学如何学二次函数?

初三二次函数学习方法

中考数学知识点梳理总结

数学知识点

初二下册数学知识点总结

数学知识点