很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。下面是由出国留学网编辑为大家整理的“初中数学知识点归纳总结2022”,仅供参考,欢迎大家阅读本文。
初中数学知识点归纳总结2022
1、代数式的定义:用运算符号把数或字母连接而成的式子叫做代数式。
2、代数式的分类:代数式分为有理式和无理式,有理式又可以分为整式和分式,而整式又可以分为单项式和多项式。
3、列代数式的定义:把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来,就是列代数式。
4、代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
5、单项式:只含有数字与字母乘积的代数式叫单项式(单独的一个数或字母也是单项式)。其中,数字因式叫做单项式的系数,单项式中所有的字母的指数的和叫做这个单项式的次数。
6、多项式:几个单项式的和叫做多项式。多项式中的每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。
7、多项式的次数:多项式中系数最高项的次数叫做多项式的次数。
8、降(升)幂排列:把一个多项式按某一字母的指数从大(小)到小(大)的顺序排列起来。
9、整式的定义:单项式和多项式的统称。
10、同类项的定义:所含字母相同,并且相同字母的次数也相同的项叫做同类项。
11、合并同类项:把多项式中同类项合成一项的过程叫做合并同类项。
12、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
13、整式的乘除法计算法则:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m,n是正整数)②同底数幂的除法法则:同底数幂相除,底数不变,指数相减即( ≠0, ,是正整数, > )③幂的乘方法则:幂的乘方,底数不变,指数相乘,即 (m,n是正整数)④积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(是正整数)。
14、因式分解的定义:把一个多项式化成几个整式的积的形式,叫做多项式的因式分解。
15、因式分解的注意事项:因式分解要分解到不能再分解为止;因式分解与整式乘法互为逆运算。
16、公因式的定义:一个多项式的各项都含有的相同的因式叫做这个多项式各项的公因式。
17、分解因式的方法:①提取公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种因式分解叫做提取公因式法。即: ②运用公式法:反用乘法公式,可以把某些多项式分解因式,这种方法叫做运用公式法(常用的有:和)③分组分解法:利用分组来分解因式的方法叫做分组分解法④十字相乘法:将 型的二次三项式分解为。
18、方程的定义:含有未知数的等式叫做方程。
19、方程的解:使方程两边相等的未知数的值叫做方程的解,只有一个未知数的方程的解也叫做方程的根。
20、一元一次方程:含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,它的标准形式是ax+b=0,其中x是未知数,它有唯一解。(a≠0)
21、一元二次方程:只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程,一般形式是ax+bx+c=0,其中ax称为二次项,bx叫做一次项,c叫做常数项。
22、增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根(使方程的分母为0的根),因此解分式方程时要验根。验根的方法通常是把求得整式方程的根代入最简公分母,使最简公分母为0的就是增根。
23、二元一次方程:含有两个未知数并且含有未知数的项的次数是1,这样的方程叫做二元一次方程(注意:对于未知数来说,构成方程的代数式必须是整式)。
24、二元一次方程的解法:给其中一个未知数一个确定值,解关于另一个未知数的方程,得出这个未知数的值,由此就得到二元一次方程的一个解。
25、二元一次方程组:两个二元一次方程合成一组就叫做二元一次方程组。
26、二元一次方程组的解法:解二元一次方程组的基本思想就是消去一个未知数转化成一元一次方程求解,消元的基本方法就是代入法和加减法。(①代入法:代入法的基本思想是方程组中的同一个未知数应该表示相同的值,所以一个方程中的某个未知数,可以用另一个方程中表示这个未知数的代数式来代替,从而就可以减少一个未知数,把二元一次方程组转化成一元一次方程。②加减法:加减法的基本思想是,根据等式的基本性质2,使两个方程中某一个未知数的系数绝对值相等,然后根据等式的基本性质1,将两个方程相加减,从而可以消去一个未知数,转化为一元一次方程。)
27、平面直角坐标系:为了用一对实数表示平面内一点,在平面内画两条互相垂直的数轴,组成平面直角坐标系。其中,水平的数轴叫做 轴或者横轴,取向右为正方向;铅直的数轴叫做 轴或者纵轴,取向上为正方向,两个数轴相交于点O,点O叫做坐标原点。
28、象限:横轴和纵轴把平面分为四个象限,其中右上角的为第一象限,左上角的为第二象限,左下角的为第三象限,右下角的为第四象限。
29、函数的表示方法:①解析法:把两个变量的对应关系用数学式子来表示②列表发:把两个变量的对应关系用列表的方法表示③图像法:把两个变量的对应关系在平面直角坐标系内用图像表示。(通常将以上三种方法结合起来运用)
初中数学的学习方法
1、数学新知识的学习,数学能力的培养主要在课堂上进行。所以要特别重视课内的学习效率,不敢有一丝马虎,一定要形成正确的学习方法。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
2、考试前要做好准备,练练常规题,把自己的思路展开,切忌考前在不保证正确率的前提下提高解题速度。对于一些容易的基础题,要有十二分的把握拿满分;对于一些难题,也要尽量拿分,考试中要尝试得分,使自己的水平正常甚至超常发挥。
3、以基础题目入手,以课本上的题目为准,提高自己的分析能力。掌握一般的解题思路。对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正,在平时养成良好的解题习惯。
4、专心听老师对重点难点的剖析,听解法及思路分析、技巧等,在听课过程中要对预习中的例题的不明之处提出自已的疑问;其次在听课时还要勤于思考,积极举手发言,敢于发表自己的见解。
5、在进行单元小结或学期总结复习时,自己对所学过的每个知识点、每章节的内容加以综合归纳,注意知识的新旧联系、知识的前后联系、知识的横向联系,写出简明小结,使知识系统化、条理化、专题化。