考研数学往往是考研人们在复习过程中花费精力最多的一门考试,对于高数和线性代数的双重折磨,很多考生表示不想再体验第二次,那么接下来小编就为大家带来2023年考研数学线性代数考察方式及考试重要考点内容分析,快来看看吧!
考察方式:
一、客观题(选择题和填空题)
常考查矩阵的性质、计算以及向量的线性相关性等知识点。向量的线性相关性是比较难的一部分内容,大家复习的时候要记住相关的结论并深刻理解,最好是能够自己试着证明结论,这样有助于巩固掌握相关结论。而矩阵的性质及运算,是每年客观题考查的最多的,像初等矩阵的运算、伴随矩阵的性质、矩阵的秩、矩阵合同、矩阵相似等等,非常多而且联系紧密,需要我们在复习的时候总结,做题的时候看用到哪个知识点,把它们摘列在笔记本上。如果做题多了,你会发现有些性质是常考考点,几乎每年都考,而且这些性质是怎么考的,什么时候该用这些性质,在试题或是模拟题中都有着规律的反映。
二、解答题
近几年来看,都是考查计算题的,或者以计算为考查内容的证明题。其中,线性方程组是经常考的,或者考查向量的线性表出问题,实际上也可以归结为线性方程组的问题,一个向量能否或是如何由一组向量来线性表示,也就是考查相应的非齐次线性方程组是否有解或是通解(解)是什么样的。另外,对于解的结构,也需要大家深入理解,给出解的形式,要能够知道相应的系数矩阵的性质。所以,大家复习的时候一定要掌握齐次和非齐次线性方程组的解法,不但要知道如何解,还要能够快速准确的解出来;同时,还要弄清楚解线性方程组和相应的向量问题是如何转化的。而特征值和特征向量,不但是重要考点,同时也是难点之一,也是解答题考查的内容。最近几年考题,不再是简单的给出一个矩阵,然后求特征值特征向量,求相似对角化的问题了。常见的形式,是不给出矩阵,而是给出部分特征值或部分特征向量,让大家反过来求出矩阵,或是相似对角化。这样的问题,就需要我们对特征值的概念、性质有很深的理解,对于常用的性质结论也要掌握的非常熟悉,比如特征值和行列式的关系,特征值和迹的关系等等。只有这样才可能解的出来。二次型的问题可以转化为相似对角化的问题,因为二次型和它的实对称矩阵是一一对应的。这样就归于前面的问题了。
综合来看,线性代数的内容没有高数那么多,但是知识体系相对比较松散,大家容易找不到重点。复习的时候,要对照考试大纲,分析清楚哪部分内容考查大家的方式是怎样的,性质定理该归纳的归纳,该理解的理解。更重要的,一定要强化训练,不但要清楚一道题怎么解,更要实实在在的把它写出来,“眼高手低”是很多复习线代的同学的通病。及时总结,强化练习。
重要考点:
一、行列式部分,强化概念性质,熟练行列式的求法
在这里提醒各位考生,行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。
二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用
经过历年分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。
三、向量部分,理解相关无关概念,灵活进行判定
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
四、线性方程组部分,判断解的个数,明确通解的求解思路
线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。为了使考生牢固掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求解思路进行了整理,希望对考研同学有所帮助。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。
五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解
矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。
六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理
二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形掌握二次型正定性的判别方法等等。
推荐阅读:
考研大纲 | 考研经验 | 考研真题 | 考研答案 | 考研院校 | 考研录取 |