教案课件是老师上课做的提前准备,每位老师都应该他细设计教案课件。同时还要明白写好教案课件,也能让老师自己知道教学意图。栏目特意为你整理最新小学数学方程教案,欢迎你参考,希望对你有所助益!
最新小学数学方程教案【篇1】
教学内容:教科书第12~13页,回顾与整理、练习与应用第1~4题。教学目标:1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。教学过程:一、回顾与整理1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。2、组织讨论。(1)出示讨论题。(2)小组交流,巡视指导。(3)汇报交流。你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?(等式与方程都是等式;等式不一定是方程,方程一定是等式。)(含有未知数的等式是方程。)(等式性质:)(求方程中未知数的值的过程叫做解方程。)3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。二、练习与应用1、完成第1题。(1)独立完成计算。(2)汇报与展示,说说错误的原因及改正的方法。2、完成第2题。(1)学生独立完成。(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)3、完成第3题。(1)列出方程,不解答。(2)你是怎样列的?怎么想的?大家同意吗?(3)完成计算。4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。三、课堂总结通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?
最新小学数学方程教案【篇2】
教学目标:
1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。
2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。
教学重点:方程的意义。
教学难点:正确区分等式和方程这组概念。
教学准备:简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。
教学过程:
一、课前谈话:
同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?
这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)
当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。
二、新授
1、玩一玩
利用这种现象,科学家们设计出了天平,老师也自己做了一个简易的天平。我们用它来玩一个类似于跷跷板的游戏。好不好?
谁想上来玩?
请你在左边放一个20克的法码,右边放一个50克的法码,这时天平怎么样?(右边的把左边的跷起来了),在左边再放一个20克的法码,这时天平怎么样?(右边的把左边的跷起来了,说明右边的重量比左边的重),
你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)
再在左边放一个10克的法码,这时天平怎么样?(平衡了)
你能也用一个式子来表示这时候的现象吗?(板书:20xx+10=50。学生说加法,则说两个20相加还可用[用水笔板书:]
看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?
老师为你们每一个学习小组也准备了一架简易天平,还有一些法码,以及两块橡皮泥,大家可以利用这些工具,或者利用你们身边一些比较轻的物体,如橡皮、小刀等,来玩一玩,然后把你们玩的时候看到的现象用式子表示出来,好不好?
给你们5分钟的时间,比一比哪个小组又快又好。
哪个小组把自己所写的式子拿上来展示出来。
(有不一样的都可以拿上来)
2、分类
你们对这些式子满意吗?
大家写出了这么多的式子,你能把这些式子按照一个统一的标准分类吗?小组讨论怎么分?按照什么样的标准分?
谁来说说你们是按照什么标准分的?
1、如果学生中有是否含有未知数(板书:含有未知数)是否是等式(板书:等式)这两类的指名上黑板分,其余的口头交流。
2、把学生写的式子分成两堆,让学生分]
师:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?这一种分法,
师:你能把这一种再分成两类吗?怎么分?指名板演。
你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)
象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。
3、理解概念
练习:你能举一个方程的例子吗?学生在本子上写一个。
回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)
4、巩固概念
老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)
通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用X表示。
(2)未知数不一定只有一个。
一个方程,必须具备哪些条件?
5、比较辨析
师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?
如果老师说,方程一定是等式。对吗?(结合板书交流)
等式也一定是方程。(结合板书交流)
也就是说:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式来表示方等式和方程之间的关系吗?
例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)
三、巩固
师:同学们的图非常形象地表示出了方程和等式之间的关系,
1、这些图你能用方程来表示吗?
2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?
如:我班一共有多少人,男生有多少人?如果把女生的人数看成X,你会用方程来表示男女生人数与全班人数之间的关系吗?
师:这里还有一些有关我们学校的信息,谁来读一读。
3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)
四、小结
学了这堂课你有什么想说的吗?你有什么想对老师说的吗?
最新小学数学方程教案【篇3】
尊敬的各位领导、各位老师:
大家好!
我说课的题目是《方程的意义》。我将从学情分析、教材分析、教学流程三个方面进行说课:
一、学情分析
《方程的意义》对于儿童来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。
二、教材分析(出示教材图)
方程的意义是学生在已经掌握了用字母表示数,可以用一些简单的式子表示数量间的关系的基础上进行教学的,它将为要学习的利用等式的性质解方程及列方程解应用题打下基础。教材在编排上注重让学生根据具体的情景根据各个天平的状态,写出等式或不等式,在相等与不等的比较中,学生进一步体会等式的含义,同时也初步感知方程,积累了具体的素材。
人教版教材《方程的意义》教材内容选自义务教育课程标准实验教科书(人教版)五年级(上册)第53页——54页。做一做。练习十一1——3题。教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。
为提供更为丰富的感知材料,教材提出:你会自己写出一些方程吗?然后通过三位小朋友在黑板上写方程的插图,让学生初步感知方程的多样性。
在“做一做”里,教材给出了6个式子,让学生识别哪些是方程。要让学生明白,未知数还可以用不同的字母表示。
“你知道吗”的阅读材料,简要介绍了有关方程的一些史料。通过让学生阅读,了解一些有关方程的历史和发展。
冀教版教材《方程的意义》是学生已学过整数四则运算法则和定律,掌握了用字母表示数的基础上进行教学的,同时又是即将学习的“解方程”的基础。教材选择了天平这个直观教具,提出了“观察天平图、用式子表示天平两边物体质量关系”的要求。在学生观察、按要求写式子,以及对写出的式子进行分析归纳的基础上,认识等式和方程。教学“方程的意义”,并非让学生简单地认识方程的外形特征——“含有未知数的等式”,而是要让学生体会方程的本质特征——揭示事件中最主要的数量关系。揭示“方程的意义”,必须借助于学生的日常生活经验,利用具体的问题情境去帮助学生寻找相应的等量关系,构建“方程”的概念。基于以上分析,我确定本节课的教学目标如下:
1、认知目标:结合天平示意图,在观察、用式子表示数量关系、归纳、类比等活动中,经历认识等式和方程的过程。
2、能力目标:了解等式和方程的意义,能判断哪些是等式、哪些是方程,能根据具体情境列出方程。
3、情感目标:主动参与学习活动,获得积极的学习体验,激发学习新知识的兴趣。
教学重点:掌握“方程”、“等式”的意义。
教学难点:理解“等式”与“方程”之间的关系。
三、教学流程:
本节课我安排了五个环节:
一、口算练习。
这些练习题主要依据的是教研室提供的题目,一共30道口算题。训练的目的就是要提高学生的口头计算能力和计算技巧。时间2分钟,做对20道题的得满分,多者加分,少则扣分。
二、创设情境,抽象出等量关系。
目的在于激发学生的学习兴趣,提高课堂学习质量。因此创设情境要具有简洁性、趣味性和问题性。
1、提出问题:老师这里有一本字典和一本数学书,大家来猜一猜哪个重一些?可以掂一掂再来猜。
(说明:师生进行猜质量的活动,既激发学生参与的兴趣,又为下面的学习创造素材。)
怎样才能验证刚才估测的结果呢?(用秤称或用其它方法称出物体的质量)非要称出它们的具体重量吗?(学生充分说完引出天平测量)
2、小结:也就是说天平平衡了,两边的物品重量就是相等的,是这样吗?天平就是利用这个特性,把其中的一边换成了有具体重量的砝码就可以知道中一边物品的重量了。今天我们就利用天平这个我们都非常熟悉的测量工具来学习方程的意义。
(在课的开始,我就从学生的生活经验出发,让他们说说见过的称物体重量的工具,顺势提出天平,介绍天平。从中感知“数学来源于生活”的道理,把新知建立在学生已有的知识经验的基础之上,不至于拔高起点。)
三、自主探究。
由于学生对天平以及天平的用法并不陌生,所以接下来我安排了两个活动。
导学一:
1、观察六幅天平示意图,你能用式子表示天平两边的数量关系吗?
在这里我首先利用课件出示第一幅天平示意图,引导学生用式子表示天平两边的数量关系。重点观察天平左右两边砝码的质量和天平此时所处的状态。由于学生已经有了使用天平的经验,大多数学生能够正确写出关系式的,如果有个别学生有困难就得需要同学的帮扶老师的指导了。接下来我会利用课件把其余五幅天平示意图全部出示出来,引导学生观察每个天平左右两边砝码的质量和此时天平所处的状态。重点引导学生观察每个天平左右两边砝码的质量都是用什么数表示的,还有此时每个天平所处的状态有什么不同,然后再引导学生写出关系式。问题预设:由于有了前面的经验,绝大多数学生能够根据图意正确写出关系式,但是也有可能出现下列错误:如遇到有字母的不会表示,遇到天平此时所处的状态不是平衡状态的不会用不等式表示,或者把所有的关系式都写成等式了。
遇到这种情况时,首先引导学生自主解决,引导他们再次观察,找出自己错的原因。自己实在解决不了的由同学或老师帮助解决。
2、当同学们把六个关系式都写正确后,出示问题:上面的六个关系式有什么异同点,你能给它们分成两类吗?
首先引导学生细致观察六个算式的异同点,然后再试着分类。问题预设:学生可能会给分成等式、不等式、含有字母的、不含有字母的四类。
3、紧接着再次提出问题:你能把上面的等式再分成两类吗?
让学生细致观察等式的特征,找出这些等式的相同点和不同点,然后再进行分类。问题预设:学生可能分成含有字母的和不含有字母的两类。
4、自学课本25————26页的内容。概括出等式和方程的意义。
根据以上分类情况,再根据书中的介绍由学生自己概括出等式和方程的意义。重点强调方程与等式的区别:方程一定是等式,但等式不一定是方程。
5、举例说明什么样的式子是方程?
当学生真正理解了等式与方程的意义后,试着让学生写出几个方程。预设:学生写的可能都是含有未知数x的方程,还有可能写出的是不含有未知数的等式。这就需要引导学生从方程的意义入手,正确写出算式。并且强调:在方程里,未知数一般用x表示,有时也可以用其它字母表示,如:y z k等。
导学二:
1、完成“试一试”。(目的是检验学生对方程的意义是否真正理解。)
2、把上面自主探究内容与同桌对学,然后进行小组交流讨论。(小组长把小组内存在的问题、疑点进行分类整理准备展示。)
此环节全部放给学生,由各小组长组织。老师借此机会参与到各小组和学生一起探究,一起交流。
四、展示。
1、小组派代表进行成果展示。(此环节主要是展示学生在自主探究过程出现的错误,解决不了的问题,以及疑点。由学生自己自主解决,实在解决不了的再由老师进行点拨。)
2、总结回顾:
问:这节课你有什么收获?有什么感受?
(说明:简单的总结,让学生梳理本课所学内容,强化方程的意义与本质)
五、反馈。
反馈的目的不仅是考察学生对本节课知识的掌握情况,还要考查学生利用新知识解决生活问题的能力,丰富用数学解决问题的活动经验,更主要的可以为今后学习列方程解应用题打好基础。
我安排了两项内容:“练一练”要求所有的学生都完成,拓展练习要求有余力的同学完成。(体现了因人而异,不同层次的学生有不同的学习任务。)
以上是我的说课,谢谢各位领导、各位老师!
最新小学数学方程教案【篇4】
这部分内容共有三道例题。它们的共同点是每道例题都担负着教学列方程和教学解方程的双重任务。这是本单元学习的难点。
1.例1。
编写意图
例1的题材源于足球的构成,即一个现代足球是由12块正五边形的黑色皮和20块正六边形的白色皮制成的。这种完美的球形结构,令一些数学家、建筑学家和化学家着迷。教材呈现给同学们的问题是:已知白色皮有20块,比黑色皮的2倍少4块,问黑色皮有多少块?
这道题的数量关系,学生容易想到的有以下三种形式
黑色皮的块数2-白色皮的块数=4
黑色皮的块数2-4=白色皮的块数
黑色皮的块数2=白色皮的块数+4
比较而言,前两种形式的数量关系,更容易理解,而且都能引入形如axb=c的方程,有利于达成既学列方程,又学解方程的教学目标。因此,教材的解答,选用了第一种形式的等量关系,即把黑色、白色皮的块数关系看成一个数的几倍与另一数比大小的关系。与其相应的顺思考问题,就是求比一个数的几倍多(或少)几的数是多少。
例1若用算术方法解,需要逆思考,思维难度较大,学生容易出现先除后减的错误。通常不作教学要求。这里用方程解,思路比较顺,体现了列方程解实际问题的优越性。
从这里开始,教材要求学生自己写出用字母x表示未知数的设句。
列出方程之后,怎样解这样的方程呢?实际上,形如axb=c的方程,是由ax=d与yb=c综合而成的。因此,教材介绍的解法,先把ax作一个整体,求出ax等于多少,再求x等于多少。
最后,提示学生交流不同解法,并继续提醒记住验算。
教学建议
(1)教学前,可以组织两个内容的准备性练习,为新授做好铺垫。一是针对几倍多(少)几的数量关系,进行列方程的练习。如:
公鸡x只,母鸡30只,比公鸡只数的2倍少6只。
二是解方程的练习。如:y-20=4,2x=24等。
(2)出示例题后,首先引导学生审题,识别哪些信息是解决求黑色皮块数这个数学问题所需要的。然后分析白色皮块数与黑色皮块数之间的关系,如有必要,可画线段图帮助分析。
然后提问:
①怎样把x表示什么写清楚?
②怎样列方程?
应当允许学生得出不同的数量关系式,列出不同的方程。
教师选择2x-20=4讨论它的解法。强调先把2x看作一个整体,先求出2x等于多少,再求出x等于多少。然后让学生自己检验。
接下去,就可以请列出不同方程的学生说出自己所列的方程,如2x-4=20,或2x=20+4。这时就完全可以让学生自己陈述解方程的过程了。教师应注意引导学生观察解的过程中,发现它们殊途同归,都能转化为2x=24。
最后,可以引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示;
②分析、找出数量之间的相等关系,列方程;
③解方程;
④检验,写出答案。
2.关于练习十二中一些习题的说明和教学建议。
第1题,练习解形如axb=c方程。最后一小题4x-39=29略有变化,一般学生能自己解决。对确感困惑的学生,可指导他们先算39。
第2~10题都是实际问题,其中第3、4、5、6、9、10题,虽然题材各异,但它们的数量关系都与例1类似,都是一个量比另一个量的几倍多(少)几,都是求作为比较标准(即看作一倍)的那个量。
这些问题,都可以让学生独立解答。练习后,教师应引导学生注意它们的共同点,并总结解决问题的经验。
第6题,其中亚洲的面积(包括岛屿)约为4400万平方千米。
第7题,题材与表现形式富有趣味。题目中提供了华氏温度与摄氏温度的关系,这个关系也可以说成华氏温度比摄氏温度的18倍还多32度。
练习时,可以让学生自己代入关系式解答,再引导他们用几倍多几的语言表达两种温度之间的关系。
第2题与第8题的数量关系相类似,都是某一总数由两部分组成,其中一部分为两个数的积。
第11*题,可让学有余力的学生选做。可以这样想:(36-4a)8是一个除法算式,当它的结果是0时,说明被除数是0,即36-4a=0;当它的结果是1时,说明被除数与除数相等,即36-4a=8。这样的方程前面尚未出现过,可以利用加减法关系,推得4a=36与4a=36-8。
最后一题为思考题。容易看出,和的最高位是1、即t=1,代入原式,得
个位上a+1=1,说明a=0。观察十位与千位,v+s=11,因此百位上v=1+1+1=3,代入v+s=11,得s=8。
3.例2。
编写意图
例2创设了购买两种水果的现实问题情境。如果撇开各数量的具体内容,就它的数学意义来讲,可抽象为两积之和的数量关系。这种数量关系在生活中经常能遇到。而且,理解了两积之和的数量关系,也就容易理解两积之差、两商之差的数量关系。在例2中组成两积的四个因数,有两个是相同的,这就可以根据分配律,得到含小括号的方程。这些都使例2具有举一反三的典型意义。
教材给出了两种方程,其一为两积之和等于已知的总数,让学生自己解答。其二为含小括号的方程,介绍了把小括号内的式子看作一个整体求解的思路和方法,并留有空白让学生自己解完。
教学建议
(1)教学例题前,可以先复习两积之和的实际问题,如:
妈妈买了2kg苹果和3kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?让学生独立列式计算,并说出数量关系:
苹果的总价+梨的总价=总钱数
2.42+2.83=13.2(元)
(2)教学例题时,可以先把复习题改为:妈妈买了2kg苹果和3kg梨,共付13.2元钱,已知梨每千克2.8元,苹果每千克多少钱?
学生容易看出前后两题的数量关系没变,只是已知数和未知数交换了位置。因此,完全可以让学生自己列出方程并解答。
解:设苹果每千克x元。
2x+2.83=13.2
然后,出示例2,即把梨的数量由3kg改为2kg,让学生审题后,教师可提出问题:除了像上题那样列方程之外,还可以怎样列方程?有了上面的铺垫,学生不难想到:
(苹果的单价+梨的单价)2=总钱数
并根据这个等量关系列出方程。
接下去就可以引导学生把小括号内的2.8+x看作一个整体,先求出2.8+x=?,剩下的解题过程可以让学生在课本上完成。
(3)作为补充练习可以给出一个方程,如:(26+x)3=150让学生口头编出具有现实意义的问题,在小组内交流。这样的练习既有助于学生掌握数量关系,又能使学生初步体会这一数量关系广泛的现实意义。
4.例3。
编写意图
例3的内容是关于地球表面海洋面积和陆地面积的计算。它的特点是问题含有两个未知数,一般通常用两个已知条件说明两个未知数的关系。如给出两个未知数的和与差,或给出两个未知数的倍数关系与两个未知数的和(或差)。
具有这种数量关系的问题,在算术中称为和差、和倍、差倍问题。若用算术方法解,思路特殊,需要分别教学。改用方程解,都可归结为解形如axbx=c的方程,思路统一,解法一致,学会其中之一的解法,其他几种就很容易类推解决。
在实际生活中,也常常会遇到一些具有这种数量关系的问题。特别是当两个数的倍数关系用分数、百分数表示时,这样的问题就更常见了。
像这样含有两个未知数的问题,在本单元之前,学生还没接触过。但它与学生以前学过的不少内容有关。比如,已知两数,可以求出它们的和、差及倍数关系,这是小学低年级的小学内容。现在,从两数的和、差及倍数关系中选取两项作已知条件,反过来求两数各是多少,这就是我们在这里讨论的问题。可见,所谓的和差、和倍、差倍问题,实际上是已知两数,求它们的逆思考问题。
在小学中年级,曾出现过只有两个已知条件,却要两步计算解决的实际问题。如,舞蹈队有男生20人,女生人数是男生的2倍,舞蹈队共有学生多少人?女生比男生多多少人?这类问题的特点是选取两数之一作一个条件,再从两数的和、差及倍数关系这三个量中选取一个为另一个条件,然后求三个量中的其他两个量。不难看出,例3也是这类两步计算问题的逆思考问题。
解答例3,首先碰到的第一个问题是设未知数。学生已有的经验是求什么设什么。现在面临一道题中要求两个未知数各是多少,究竟设哪个为x,另一个又怎样表示?这是必须突破的一个难点。就数学本身来说,和差倍关系的两个未知数,任选一个设为x都是可行的。同样,另一个未知数的表示方法也有两种,即选用两个已知条件中的任何一个都能表示。比较而言,在各种解法中,把作为比较标准的未知数设为x,则用含x的式子表示另一个未知数就比较容易。
教材采用的就是这种方法。设陆地面积为x亿平方千米,根据两个量的倍数关系这个条件表示海洋面积,再根据另一个已知条件(两部分面积的和即地球表面积),列出方程。
这里第一次出现了形如axbx=c的方程。考虑到学生的知识水平和接受能力,教材没有出现合并同类项等术语,而是启发学生运用乘法分配律,将原方程转化为学生已会解的形式(ab)x=c。这与合并同类项的方法实质上是一致的。
求出陆地面积后,接下去怎样求海洋面积?有两种选择。即任选两个已知条件中的任何一个都可以。教材以两个同学互相交流的形式,对两种算法都作了介绍。
教学建议
(1)教学例3前,可以采用口答形式进行一些写出含有字母式子的填空练习。如:学校科技组有女同学x人,男同学是女同学的3倍,男同学有()人,男女同学一共有()人,男同学比女同学多()人。还可以给出复习题:
地球上的陆地面积为1.5亿平方千米,海洋面积约为陆地面积的2.4倍。地球的表面积是多少亿平方千米?让学生列式计算出地球表面积是5.1亿平方千米,作为新授的铺垫和过渡。
(2)教学例3时,可以先让学生说出已知条件,并根据已知条件画出线段图(暂不标出x)。再让学生说出所求问题,明确要求的未知数有两个。然后利用线段图启发学生思考,先设哪一个未知数为x,根据已知条件,另一个未知数该怎样用含有字母的式子来表示。根据学生的回答在线段图上标注x和2.4x。然后引导学生想:一个条件已经用来表示第二个未知数了,还可以根据哪个条件找出等量关系列方程?由此列出课本介绍的方程。然后将方程和复习题的算式进行对比:
1.5+1.52.4=5.1
x+2.4x=5.1
帮助学生沟通新旧知识的联系,进一步理解数量关系。
如果学生提出不同的方法,可酌情加以比较,如:
让学生观察这些方程,容易看出解方程都比较麻烦。如果学生求出陆地面积后,怎样求海洋面积,有两种方法。学生喜欢用哪一种都可以,不必强求一律。
(3)例3的检验,应予以重视。可以提出问题:除了代入方程检验之外,还有没有其他的验算方法?学生一般能够想到,验算两个得数的和与商,看是否等于已知数。教师可以指出,在解决实际问题时,这样验算比先检查方程,再把x的值代入方程检验,更有效,也更简便。
(4)引导学生小结时,可以着重明确以下三点:第一,两个未知数怎么办?可以先选择其中一个设为x,列方程解,再求另一个;第二,两个已知条件怎么用?可以把其中一个用来写出含有字母的式子,表示另一个未知数,另一个用来列方程;第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。
5.关于练习十三中一些习题的说明和教学建议。
第1题,练习解含有小括号的方程。熟练之后,允许学生简化解方程过程的书写。如:
x=11.4x=11.4
第2题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。
第3题,数量关系为两积之差的实际问题。如学生理解题意有困难(特别是农村学校),教师有必要作些说明。如水表有什么用处,收取的水费是怎样计算出来的。还可以从已知的101室入手,先让他们列式计算,101室第二季度的水费是不是80元。即
2.52788-2.52756=2.5(2788-2756)=80(元)
然后再设102室上次读数为x吨,并列出方程,这样就不会感到困难了。
第4题的数量关系仍为两积之和,但两个积都含未知因数x,所以列出的方程形如axbx=c。把它作为例2与例3配套练习的过渡比较合适。
第5题,练习解形如axbx=c的方程。熟练以后,允许学生简化解方程的书写过程。如:
解5.4x+x=12.8
6.4x=12.8
x=2
第6题,含两个未知数,已知条件是两数的和与差(两个相邻自然数的差是1),它与已知和倍、差倍关系的问题略有不同的是,设两个数中的任何一个为x都可以,不存在解方程时简便或麻烦的问题。
第7题,为鸡兔同笼问题的变式。题中的隐蔽条件是鸡有2条腿,兔有4条腿。由于鸡兔数量相同,所以列出的方程形如ax+bx=c。
第8题,含两个未知数,已知条件为两数之差与倍数关系。可以让学生选用自己喜欢的方法,列出方程。
第9、10题都是两积之和数量关系的实际问题,而且两个积中都有相同的数,所以都能转化为或直接列出含小括号的方程。区别只是第9题的相同因数是未知数,第10题的相同因数是已知数。
第11*、12*题为选做题。两题难度都不大,一般学生都能解决。第11*题只要把□里填入的相同数设为x,就转化为熟悉的方程24x-15x=18。第12*题可先从方程的两边同时减去x,即得2x=100。
最后一题是思考题。设一共取了x次,也就是乒乓球、羽毛球都各取了x次。由于乒乓球、羽毛球的数量相等,得方程
5x=3x+6
解:x=3。
所以原来乒乓球有53=15(个),羽毛球也有33+6=15(个)。
最新小学数学方程教案【篇5】
教学内容:教科书第109页的例2、例3,完成第109页下面的做一做中的题目和练习二十七的第1~4题。
教学目的:使学生理解和初步学会axb=c这一类简易方程的解法,认识解方程的意义和特点。
教学重点:会axb=c这一类简易方程的解法,认识解方程的意义和特点。
教学难点:看图列方程,解答多步方程。
教具准备:电教平台。
教学过程:
一、导入
1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。
二、新课
1.教学例2。
出示小老鼠的问题:
出示例2。先让学生自己读题,理解题意。
教师:这道题的第一个要求是看图列方程。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?
学生:含有未知数的等式叫做方程。
教师:那么,要列方程就是要列出什么样的式子呢?
学生:列出含有未知数的等式。
教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?
学生:3x+4=40。
教师:很好!谁能再说说这个方程表示的数量关系?
学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。
教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4=40,可以怎么想?根据什么解?
学生:可以把原方程看作是加数+加数=和的运算,因此,根据加数=和-另一个加数来解。
这样也可以根据加数=和-另一个加数来解。得出3x=40-4,再得出3x=36。
教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。
教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据加数=和-另一个加数求出3x等于多少,再求x等于多少就得出方程的解是多少。
2.教学例3。
小猫提出的问题:
教师出示:解方程18-2x=5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。
教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据减数=被减数-差得出2x=18-5,2x=13,x=6.5。)
教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程63-2x=5。
教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?
学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x=5的等号左边只有一步运算,而63-2x=5的等号左边有两步运算。
教师:63-2x=5,等号左边的两步运算,第一步是算63,就等于18。这样方程63-2x=5就变成了18-2x=5。所以,解方程63-2x=5,要按照运算顺序,先算出63的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程63-2x=5解出来。
让学生在练习本上解
最新小学数学方程教案【篇6】
教学内容列方程解应用题
教学目标1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。
2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。
教学重点列方程解答数量关系稍复杂的两、三步应用题。
教学难点形如:ax+bx=c的数量关系
教学理念培养学生自主探究、合作交流的学习方式。提高学生的检验能力。
教师活动过程学生活动过程备注
一、复习铺垫
1练习二十一T1
学生回答
2根据条件说出数量关系式:
果园里的桃树和梨树一共有168棵。
果园里的桃树比梨数多84棵。
桃树棵数是梨树的3倍。
学生回答数量关系式
3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!
学生自主编题,口头说题
4依据学生回答,教师出示题目。
A.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?
B.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)
C.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)
教师巡视,了解情况。
二.探究新知
1.学生尝试例1
引导学生画出线段图
集中反馈:生说师画图
2.教师组织学生汇报
学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。
学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。
3.小组讨论。
解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?
用方程解,设哪个数量为X比较合适?用什么数量关系式来列式呢?
4.学生独立完成想一想。
这一题与例1有什么相同的地方?有什么不同的地方?
明确三点:1、一般设一倍数为X。2、把几倍数用含有X的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。
5完成课本94页练一练
指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?
三、小结
本课学习了什么内容?你有哪些收获?
四、作业
最新小学数学方程教案【篇7】
教学目标:使学生会列方程解答文字题。
使学生初步感受用方程解题的优越性。
重点难点:使学生掌握列方程解文字题的的一般方法。
教学过程:
一、准备引入。
用含有字母的式子表示下面的数量关系。
1、x的3倍加1.6的和。
2、12减x的6倍的差。
二、新课教学。
1、出示例7列出方程,并求出方程的解。
12减一个数的6倍,差是5.4,求这个数。
2、分析讲解:
(1)先设未知数,一般用x表示;
(2)再根据题中表述的相等关系列出方程;
(3)求方程的解;
(4)检验方程。
解:设这个数是x。
12-6x=5.4
6x=12-5.4
6x=6.6
x=1.1
3、做试一试。要一个学生到黑板上去做,其余的做在纸上。
一个数的5倍减14与3的积,差是23。
解:设一个数为x。
5x-143=23
5x-42=23
5x=23+42
5x=65
x=655
X=13
三、巩固练习。
见书本练一练。
四、总结。
五、布置作业
作业本p:60第(6)。
最新小学数学方程教案【篇8】
教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。
教学目标:
1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。
2、通过小组合作,进一步培养学生探索的意识,发展思维能力。
3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。
教学过程:
一、练习与应用
1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。
2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)
二、探索与实践
1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。
2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨
三、与反思
在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。
四、阅读“你知道吗”可以再查找资料,详细了解。
五、课堂这节课我们复习了哪些内容?你有了哪些收获?
最新小学数学方程教案【篇9】
教学目标:使学生会列方程解答和倍问题与差倍问题的应用题,提高学生分析问题和解决问题的能力。
使学生掌握检验方法,养成自觉检查、验算的良好习惯。
重点难点:会列方程解答和倍问题与差倍问题的应用题
有两个未知数,如何设未知数
教学过程:
一、复习准备
1、化简下列各式
6X+3X0.8X-0.7X4X+X-2
16X-15X3X-X+8X0.9X+0.1X
2、出示:果园里有梨树40棵,桃树的棵数是梨树棵数的3倍。要求学生:
(1)分组讨论把已知信息表示在线段图上
(2)根据已知信息,通过计算,你能获得哪些信息?
(3)计算出你想知道的信息,然后表述自己的思考过程
二、学习新课
1、出示例7:果园里有桃树和梨树共160棵,桃树的棵数是梨树的3倍。两种树各有多少棵?
(1)让学生根据已知条件画出线段图
(2)和准备题的线段图比较,有何异同?
(3)和前面所学的列方程解应用题相比,有什么特别的地方?
老师们最喜爱的八佰教育网(4)要求的两个问题怎样设未知数?
(5)题中蕴含的相等关系是什么?
2、尝试练习,指名板演。
3、检验
(1)讨论检验方法:40+120=160
12040=3
(2)还可以怎样检验?
4、完成试一试
三、巩固练习:练一练15
四、总结并布置作业
最新小学数学方程教案【篇10】
教学内容:教科书第13~14页,练习与应用第5~7题,探索与实践第8~9题及评价与反思。教学目标:1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。2、通过小组合作,进一步培养学生探索的意识,发展思维能力。3、通过评价与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。教学过程:一、练习与应用1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)二、探索与实践1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨三、评价与反思在小组中说说自己对每次评价指标的理解。自我反思与评价。说说自己的优点与不足。四、阅读你知道吗可以再查找资料,详细了解。五、课堂总结这节课我们复习了哪些内容?你有了哪些收获?
最新小学数学方程教案【篇11】
教学目的
1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.
2.通过复习,使学生能够准确的找出题目中的等量关系及发现生活中的等量关系。
3.培养学生的分析以及综合能力.能够从不同角度解决同一个问题.
4.通过调查数据和利用数据,使学生在现实情境中体会到数学与现实生活的密切联系。
教学重点
通过复习,使学生能够准确的找出等量关系.
教学准备
调查表的各项内容,学生需提前一天认真调查,填写。
教学过程:
一、创设情境:我也是洋里中心校毕业的,我很愿意与同学们交朋友,交朋友应相互了解,比如,我知道班长林端13岁,体育委员江莹莹14岁,你们猜猜,陈老师今年有多少岁?
二、沟通整理,复习。
1、理一理,复习列方程解应用题的一般步骤及关键。
(1)让我用应用题的方式告诉你们:班长林端13岁,体育委员江莹莹14岁,他们岁数之和是陈老师的,陈老师今年多少岁?(板书)
(2)你能用方程方法解答这一题吗?(反馈)今天,我们将通过了解陈老师,一起交朋友的办法来复习列方程解应用题。(板书课题:总复习:列方程解应用题)
(3)过渡:结合解的过程,回忆一下,列方程解应用题有哪几个步骤,并写在笔记中。
(4)反馈:谁来说说?(师简单板书各步。)哪一步是列方程解应用题的关键?(划出第二步)
(5)过渡:列方程解应用题的关键是找数量间相等关系,等量关系找到了,问题就迎刃而解了,陈老师有多个找等量关系的绝招,这些绝招就隐藏在陈老师的自我介绍中。
2、了解找等量关系的途径,优选方程方法。
(1)找等量关系,并写出来。
自我介绍
副班长体重35千克,比陈老师体重的多5千克,陈老师体重多少千克?
陈老师爱好种花,去年种了一批,大旱后死了三分之一,过冬时又死了6棵,最后还剩10棵,求去年种了多少棵?
陈老师家门口有一长方形的鱼塘,周长24米,长7米,那宽多少米?
陈老师节约用钱,去年还存了5000元,存期一年,利率2,今年取款时银行应多付我多少元?
(2)生逐题回答等量关系,师生共同小结:找等量关系可以根据什么去找?(根据关键句或重点词句找等量关系;按照事理以及根据事情发展感变化的情况找等量关系;利用常见的数量关系和计算公式找等量关系。)
板书:1,关键字词。比是多少
2,事情发展。
3,计算公式。
4,常见的数量关系。
(3)学生利用调查表举例说等量关系。
(4)利用等量关系解答各题。(提醒学生注意第四题的要求)---想想用方程解容易还是算术解容易,拣容易的方法做。
(5)生独立回答各题。
(6)比较等量关系中的未知数位置,自主发现最后一题的未知数单独在等号的另一端,所以用算术解容易,而其余各题的未知数与已知数混在一起,用方程解较容易。
(7)第一题你还可以列出什么方程?等量关系是什么?
(8)你认为哪种方程最容易想?(小结:对了,一道题可以列出多种方程,我们要选择最容易想的方程。)
最新小学数学方程教案【篇12】
列方程解两步应用题(一)
教学目标:1、初步学会列方程解比较容易的两步计算应用题,知道列方程解应用题的步骤,掌握列方程解应用题的一般方法
2、培养学生的比较能力、分析能力和归纳概括能力
教学重点:掌握列方程解应用题的一般方法
教学难点:找出应用题中的等量关系
教具准备:教学过程:
1.口头解下列方程(小黑板出示)
x-35=40x-57=40
15x-35=4020-4x=10
2.出示复习题
商店原有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有饺子粉多少千克?
(1)读题,理解题意。
(2)引导学生用学过的方法解答
(3)要求用两种方法解答。
(4)集体订正:
解法一:35+40=75(千克)
解法二:设原来有x千克饺子粉。
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(5)针对解法二说明:这种方法就是我们今天要学习的列方程解应用题。板书课题:列方程解应用题
二、探究新知
1.教学例1
商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克。这个商店原来有多少千克饺子粉?
(1)读题理解题意。
(2)提问:通过读题你都知道了什么?
(3)引导学生知道:已知条件和所求问题;题中涉及到原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:
原有的重量-卖出的重量=剩下的重量
(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)
(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)把上面的等式改为:
原有的重量-每袋的重量卖出的袋数=剩下的重量
(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。
(7)引导学生根据等量关系式列出方程。
(8)让学生分组解答,集体订正时板书如下:
解:设原来有x千克饺子粉。
x-57=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。
小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)