出国留学网专题频道高考数学函数知识点栏目,提供与高考数学函数知识点相关的所有资讯,希望我们所做的能让您感到满意!

2014高考数学知识点《函数》小结

高考数学知识点


  出国留学网高考频道在考试后及时公布各科高考试题答案和高考作文及试卷专家点评。请广大考生家长关注,祝福广大考生在2013年高考中发挥出最佳水平,考出好成绩!同时祝愿决战2014高考的新高三学员能倍加努力,在2014年高考中也能取得优异的成绩。

  《函数》

  基本函数有三个,指数对数幂函数。

  函数表示有三种,表格图象解析式;

  性质奇偶与增减,观察图象最明显,

  若要详细证明它,还须将那定义抓。

  遇到指数与对数,两者互为反函数。

  底数非1的正数,1两边增减变故。

  若求函数定义域:分母不能等于0,

  偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;

  其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;

  图象互为轴对称, y = x是对称轴;

  求解非常有规律,反解换元定义域;

  反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;

  函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;

  图象第一象限内,函数增减看正负。

  两曲线的交点数,就是方程的解数。

  函数值两端异号,区间中间有零点。

  二分法基本思想,一个区间分成两,

  确定符号定区间,重复进行求出解。

  

函数相关知识链接

 

  相关链接:

  2013北京试卷答案(理科数学)

  2013新课标I考试数学试题及答案(理科)

  

与高考数学函数知识点相关的高考数学

2013高考数学幂函数知识点汇总

高考数学

与高考数学函数知识点相关的高考数学

高考数学知识点复习:函数与导数

高考数学 高考数学复习资料 高考数学所有知识点
高考数学知识点复习:函数与导数

  高考数学知识点复习:函数与导数


 

 

 

 

  出国留学网高考频道为您整理史上高考复习资料大全!让您的高考成绩稳步上升!


高考语文考点 高考数学考点

2013高考数学函数的应用知识点集锦

高考数学

高考数学易错知识点:函数与导数

高考数学 高考数学易错知识点 高考数学复习资料

  高考数学频道为大家提供高考数学易错知识点:函数与导数,函数与导数共有8类易错点,请大家仔细阅读下文!更多复习资料请关注我们网站的更新!

  高考数学易错知识点:函数与导数

  1.易错点求函数定义域忽视细节致误

  错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

  在求一般函数定义域时要注意下面几点:

  (1)分母不为0;

  (2)偶次被开放式非负;

  (3)真数大于0;

  (4)0的0次幂没有意义。

  函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

  2.易错点带有绝对值的函数单调性判断错误

  错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

  一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;

  二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

  对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

  3.易错点求函数奇偶性的常见错误

  错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

  判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

  在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

  4.易错点抽象函数中推理不严密致误

  错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

  解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

  抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

  5.易错点函数零点定理使用不当致误

  错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。

  函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能...

2013高考数学对数函数知识点汇总

高考数学

2013高考数学指数函数知识点总结

高考数学

初中数学函数知识点归纳总结(实用)

初中函数知识归纳 数学函数知识点总结 初中数学函数总结大全

  函数占据了初中数学知识点的很大部分,因此学好函数十分重要。下面是由出国留学网编辑为大家整理的“初中数学函数知识点归纳总结(实用)”,仅供参考,欢迎大家阅读本文。

  一次函数知识点

  1.一次函数

  如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数。

  特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数。

  2.一次函数的图像及性质

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

  (3)正比例函数的图像总是过原点。

  (4)k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  二次函数知识点

  1.二次函数表达式

  (一)顶点式

  y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。

  (二)交点式

  y=a(x-x₁)(x-x₂) [仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]

  函数与图像交于(x₁,0)和(x₂,0)

  (三)一般式

  y=aX²+bX+c=0(a≠0)(a、b、c是常数)

  2.二次函数的对称轴

  二次函数图像是轴对称图形。对称轴为直线x=-b/2a

  对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。

  特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

  a,b同号,对称轴在y轴左侧;

  a,b异号,对称轴在y轴右侧。

  3.二次函数图像的对称关系

  (一)对于一般式:

  ①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称

  ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称

  ③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称

  ④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

  (二)对于顶点式:

  ①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

  ②y=a(x-h)2+k与y=-a(x-h)2-...

推荐更多