初三数学二级函数有哪些知识点呢?想要了解的小伙伴,赶紧来瞧瞧吧!下面由出国留学网小编为你精心准备了“初三数学二次函数知识点有哪些”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
初三数学二次函数知识点有哪些
二次函数介绍
二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
二次函数表达式是什么
(一)顶点式
y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
(二)交点式
y=a(x-x₁)(x-x₂)[仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]
函数与图像交于(x₁,0)和(x₂,0)
(三)一般式
y=aX²+bX+c=0(a≠0)(a、b、c是常数)
二次函数图像的对称关系
(一)对于一般式:
①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。
②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。
③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。
④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)。
(二)对于顶点式:
①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。
②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。
③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。
求二次函数解析式的方法
(一)条件为已知抛物线过三个已知点,用一般式:y=ax²+bx+c,分别代入成为一个三元一次方程组,解得a、b、c的值,从而得到解析式。
(二)已知顶点坐标及另外一点,用顶点式:y=a(x-h)²+k,点坐标代入后,成为关于a的一元一次方程,得a的值,从而得到解析式。
(三)已知抛物线过三个点中,其中两点在X轴上,可用交点式(两根式):y=a(x-x₁)(x-x₂),第三点坐标代入求a,得抛物线解析式。
二次函数的性质
(一)二次函数的图像是...