出国留学网专题频道方程的解法有哪些栏目,提供与方程的解法有哪些相关的所有资讯,希望我们所做的能让您感到满意!

二元一次方程的解法有哪些

二元一次方程解法 解二元一次方程 二元一次方程解法有哪些

  在解二元一次方程中,很多同学只知道一种甚至不知道该如何解开二元一次方程,那它有哪些方法呢,以下是由出国留学网编辑为大家整理的“二元一次方程的解法有哪些”,仅供参考,欢迎大家阅读。

  二元一次方程的解法

  代入消元法

  (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.[3]

  (2)代入法解二元一次方程组的步骤

  ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

  ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入①中变形后的方程中,

  求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

  加减消元法

  (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[4]

  (2)加减法解二元一次方程组的步骤

  ①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

  ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入原方程组中的任何一个方程中,

  求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

  拓展阅读:二元一次方程定义

  (1)概念:含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程.

  你能区分这些方程吗?5x+3y=75;3x+1=8x;+y=2;2xy=9.

  对二元一次方程概念的理解应注意以下几点:

  ①等号两边的代数式是整式;

  ②在方程中“元”是指未知数,二元是指方程中含有两个未知数;

  ③未知数的项的次数都是1,实际上是指方程中最高次项的次数为1,在此可与多项式的次数进行比较理解,切不可理解为两个未知数的次数都是1。

  (2)二元一次方程的解

  使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一个解。

  对二元一次方程的解的理解应注意以下几点:

  ①一般地,一个二元...

与方程的解法有哪些相关的实用资料

怎么解一元三次方程 一元三次方程的解法有哪些

解一元三次方程 一元三次方程解法 一元三次方程

  一元三次方出一直是同学们比较难过的一个坎,很多同学不知道该如何解开它,以下是由出国留学网编辑为大家整理的“怎么解一元三次方程 ”,仅供参考,欢迎大家阅读。

  怎么解一元三次方程

  一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。

  一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:

  (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

  (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

  (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为

  x^3=(A+B)+3(AB)^(1/3)x,移项可得

  (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

  (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

  (6)A+B=-q,AB=-(p/3)^3

  (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

  (8)y1+y2=-(b/a),y1*y2=c/a

  (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

  (10)由于型为ay^2+by+c=0的一元二次方程求根公式为

  y1=-(b+(b^2-4ac)^(1/2))/(2a)

  y2=-(b-(b^2-4ac)^(1/2))/(2a)

  可化为

  (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)

  y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)

  将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得

  (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)

  B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)

  (13)将A,B代入x=A^(1/3)+B^(1/3)得

  (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

  式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

  拓...

与方程的解法有哪些相关的实用资料

一元三次方程的解法有哪些

一元三次方程 一元三次方程解法 方程的解法有哪些

  三次方程绝非好解的,很多方程,都是经过精心设计,各项系数配合得很好,求解过程才变得容易。以下是由出国留学网编辑为大家整理的“一元三次方程的解法有哪些”,仅供参考,欢迎大家阅读。

  一元三次方程的一般形式ax^3+bx^2+cx+d=0是很难解的!数学上要用换元法,把原方程换成一个“缺项”的方程,也就是新方程中没有二次项的。设x=y-b/3a,将它代进去,就可以得到一个新的方程y^3+py+q=0,这个方程最重要的是没有二次项,至于p和q是多少,你可以代进去算。

  对于这个y^3+py+q=0,可用待定系数法。实际上,求出的方程的根y将会有y=A+B的形式,A和B为待定系数,y^3=(A+B)^3=A^3+B^3+3AB(A+B),整理得到

  y^3-3AB(A+B)-(A^3+B^3)=0

  把这两道方程比较,可得到一个二元方程组

  -3AB=p

  -(A^3+B^3)=q

  把A和B解出来,由于上面已经设y=A+B,所以就可以把y解出来。而最初设x=y-b/3a,就可以把x解出来,这是原方程的解。

  一般形式

  一元三次方程的一般形式是 ax^3+bx^2+cx+d=0 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 如果作一个横坐标平移 y=x+b/3a,那么我们就可以把方程的二次项消去。所以我们只要考虑形如 x^3=px+q 的三次方程。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:

  (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

  (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

  (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得

  (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

  (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

  (6)A+B=-q,AB=-(p/3)^3

  (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

  (8)y1+y2=-(b/a),y1*y2=c/a

  (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

  (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=...

与方程的解法有哪些相关的实用资料

二元二次方程的解法有哪些

二元二次方程解法 二元二次方程的解法 关于二元二次方程

  二元二次方程解法是什么,典型有效的方法是什么?想知道的小伙伴看过来,下面由出国留学网小编为你精心准备了“二元二次方程的解法有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯!

  二元二次方程的解法有哪些

  1、代入消元法

  (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法。

  (2)代入法解二元一次方程组的步骤

  ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

  ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

  2、加减消元法

  (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.

  (2)加减法解二元一次方程组的步骤

  ①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

  ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

  拓展阅读:二元一次方程的概念

  含有两个未知数(x和y),并且未知项的指数都是1,这样的方程被叫做二元一次方程。二元一次方程的一般形式为ax+by=c(a≠0,b≠0).

  二元一次方程组的概念

  (1)把具有相同未知数的两个二元一次方程合在一起,就组成了二元一次方程组。

  (2)二元一次方程组必须满足的三个条件:含有两个未知数;含未知数的项的次数都是1;整式方程组(含两个或两个以上的整式方程)。

  推荐阅读:

  

与方程的解法有哪些相关的实用资料

推荐更多