出国留学网专题频道考研数学线代知识点栏目,提供与考研数学线代知识点相关的所有资讯,希望我们所做的能让您感到满意!

2017考研数学线代知识点:极大线性无关组

考研数学 考研数学知识点 2017考研数学知识点

  出国留学网考研网为大家提供2017考研数学线代知识点:极大线性无关组,更多考研资讯请关注我们网站的更新!

  2017考研数学线代知识点:极大线性无关组

  小编精心为您推荐:

  2017考研不考数学的专业

  2017考研数学一、二、三适用专业有哪些

  2017考研数学考点:斯托克斯公式

  2017年考研数学全年复习计划

  2016考研数学试题特点及2017考研复习建议

  2017考研数学复习策略:必须做好4类总结

  

与考研数学线代知识点相关的考研数学

2017考研数学线代知识点:阶和3阶行列式计算

考研数学 考研数学知识点 2017考研数学知识点

  出国留学网考研网为大家提供2017考研数学线代知识点:阶和3阶行列式计算,更多考研资讯请关注我们网站的更新!

  2017考研数学线代知识点:阶和3阶行列式计算

  小编精心为您推荐:

  2017考研不考数学的专业

  2017考研数学一、二、三适用专业有哪些

  2017考研数学考点:斯托克斯公式

  2017年考研数学全年复习计划

  2016考研数学试题特点及2017考研复习建议

  2017考研数学复习策略:必须做好4类总结

  

与考研数学线代知识点相关的考研数学

2017考研数学线代知识点:矩阵的初等变换

考研数学 考研数学知识点 2017考研数学知识点

  出国留学网考研网为大家提供2017考研数学线代知识点:矩阵的初等变换,更多考研资讯请关注我们网站的更新!

  2017考研数学线代知识点:矩阵的初等变换

  小编精心为您推荐:

  2017考研不考数学的专业

  2017考研数学一、二、三适用专业有哪些

  

2017考研数学考点:斯托克斯公式

  2017年考研数学全年复习计划

  2016考研数学试题特点及2017考研复习建议

  2017考研数学复习策略:必须做好4类总结

  2017考研数学线代复习方法:先掌握科目3大规律

  ...

与考研数学线代知识点相关的考研数学

2017考研数学线代知识点:常用7个N阶矩阵

考研数学 考研数学知识点 2017考研数学知识点

  出国留学网考研网为大家提供2017考研数学线代知识点:常用7个N阶矩阵,更多考研资讯请关注我们网站的更新!

  2017考研数学线代知识点:常用7个N阶矩阵

  小编精心为您推荐:

  2017考研不考数学的专业

  2017考研数学一、二、三适用专业有哪些

  

2017考研数学考点:斯托克斯公式

  2017年考研数学全年复习计划

  2016考研数学试题特点及2017考研复习建议

  2017考研数学复习策略:必须做好4类总结

  

2017考研数学线代复习方法:先掌握科目3大规律

...

与考研数学线代知识点相关的考研数学

2014考研数学复习:线代知识点

2014考研数学 2014考研数学复习 考研数学线代知识点

  2014年考研即将要开始了,出国留学网考研频道为各位考生总结了“2014考研数学复习:线代知识点”,通过高效的复习方法让考生在短时间内有一定的提高。

  考研数学中的线性代数试题,从难易程度上其实要远低于高数,却依然困扰了很多考生。究其原因,我们就不得不从线性代数的学科特点及命题方向着手分析。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变。而且线性代数的命题重点,除了对基础知识的注重外,还偏向于知识点的衔接与转换。考生在复习的时候要结合这两个方向进行有针对性的复习。

  举例来说,设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。

  再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩 r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)

  又比如,对于n阶行列式我们知道:若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0 时,可用克莱姆法则求Ax=b的惟一解;可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;对于n个n维向量α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否为零来判断向量组的线性相关性;矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)

  凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

  最后,希望考生在复习过程中能给掌握技巧,拿下线性代数,早日取得考研成功

  考研网推荐链接:

  2014年全国研究生报名入口

  2014年研究生考试大纲——数学二

  2014年数学一研究生考试大纲

  

与考研数学线代知识点相关的考研数学

2014年考研数学:线代知识点的衔接

2014年考研 2014年考研数学

  数学是最容易提分的科目,好差之间往往有很大的差距,数学复习好了就等于把一大票人甩在了身后,小编为您分题型分析解题方法,让您数学名列前茅

  考研数学中的线性代数试题,从难易程度上其实要远低于高数,却依然困扰了很多考生。究其原因,我们就不得不从线性代数的学科特点及命题方向着手分析。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变。而且线性代数的命题重点,除了对基础知识的注重外,还偏向于知识点的衔接与转换。考生在复习的时候要结合这两个方向进行有针对性的复习。

  举例来说,设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。

  再如,若A是n阶矩阵可以相似对角化,那么,用分块矩阵处理P-1AP=∧可知A有n个线性无关的特征向量,P就是由A的线性无关的特征向量所构成,再由特征向量与基础解系间的联系可知此时若λi是ni重特征值,则齐次方程组(λiE-A)x=0的基础解系由ni个解向量组成,进而可知秩 r(λiE-A)=n-ni,那么,如果A不能相似对角化,则A的特征值必有重根且有特征值λi使秩r(λiE-A)

  又比如,对于n阶行列式我们知道:若|A|=0,则Ax=0必有非零解,而Ax=b没有惟一解(可能有无穷多解,也可能无解),而当|A|≠0 时,可用克莱姆法则求Ax=b的惟一解;可用|A|证明矩阵A是否可逆,并在可逆时通过伴随矩阵来求A-1;对于n个n维向量α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否为零来判断向量组的线性相关性;矩阵A的秩r(A)是用A中非零子式的最高阶数来定义的,若r(A)

  凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

  考研网推荐链接:

  2014考研:非专业英语考试词组要点

  2014考研教育学专业复习指南

  2014数学考研复习知识大全

  考研网:2013政治考研真题

  

与考研数学线代知识点相关的考研数学

推荐更多