出国留学网专题频道高中数学教案全套栏目,提供与高中数学教案全套相关的所有资讯,希望我们所做的能让您感到满意!

高中数学教案设计

高中数学教案设计 高中数学教案范文

  留学网为您整理了高中数学教案设计,供您参考!

  【高中数学教案设计一】

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

  四、教学目标

  1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3.借助多媒体辅助教学,激发学习数学的兴趣.

  五、教学重点与难点:

  教学重点

  1.对圆锥曲线定义的理解

  2.利用圆锥曲线的定义求“最值”

  3.“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出——

  例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)线段 (D)不存在

  (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是...

与高中数学教案全套相关的实用资料

高中数学教案范文三篇

高中数学教案 高中数学教案范文三篇

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。以下是出国留学网小编为您整理的高中数学教案范文三篇,供您参考,更多详细内容请点击教案栏目查看。

  篇一:

  一、教材分析

  (一)地位与作用

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________________________,教学难点是_____________________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试...

与高中数学教案全套相关的高中教案

人教版高中数学教案模板范文

高中数学教案 人教版高中数学教案 人教版高中数学教案模板

  各位数学老师上课前会准备教案吗?你知道教案该怎么写吗?下面是由出国留学网小编为大家整理的“人教版高中数学教案模板范文”,仅供参考,欢迎大家阅读。

  人教版高中数学教案模板范文(一)

  教学目标

  1、掌握分析法证明不等式;

  2、理解分析法实质——执果索因;

  3、提高证明不等式证法灵活性.

  教学重点

  分析法

  教学难点

  分析法实质的理解

  教学方法

  启发引导式

  教学活动

  (一)导入新课

  (教师活动)教师提出问题,待学生回答和思考后点评。

  (学生活动)回答和思考教师提出的问题。

  [问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法? [问题 2]能否用比较法或综合法证明不等式:

  [点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法。(板书课题)

  设计意图:复习已学证明不等式的方法。指出用比较法和综合法证明不等式的不足之处, 激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式。

  (二)新课讲授

  【尝试探索、建立新知】

  (教师活动)教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评。帮助学生建立分析法证明不等式的知识体系。投影分析法证明不等式的概念。

  (学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知。

  [讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式。

  [问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?bet365备用器

  [问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?

  [问题3]说明要证明的不等式成立的理由是什么呢?

  [点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立。就是分析法的逻辑关系。

  [投影]分析法证明不等式的概念。(见课本)

  设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究。建立新的知识;分析法证明不等式。培养学习创新意识。

  【例题示范、学会应用】

  (教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题。

  (学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证。

  例1 求证

  [分析]此题用比较法和综合法都很难入手,应考虑用分析法。

  证明:(见课本)

  [点评]证明某些含有根式的不等式时,用综合法比较困难。此例中,我们很难想到从“ ”入手,因此,在不等式的证明中,分析...

高中数学教案《等比数列》

高中数学教案《等比数列》 数学教案《等比数列》 高中数学教案

  数学是一门让人很头疼的学科,但是如果教学的时候加上教案可能会容易理解的多。下面是由出国留学网小编精心为大家整理的“高中数学教案《等比数列》”,更多优秀的文章尽在出国留学网,欢迎大家阅读,内容仅供参考,希望对您有所帮助!

  高中数学教案《等比数列》

  教学目标

  1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题。

  2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

  3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

  教材分析

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

  (2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

  ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

  (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

  教学设计示例

  课题:等比数列的概念

  教学目标

  1.通过教学使学生理解等比数列的概念,推导并掌握通项...

高中数学教案简案(精选5篇)

高中数学教案 数学教案简案 精选数学教案高中

  教师们通常需要教案来辅助教学,那么教案应该怎么写呢?下面是由出国留学网小编为大家整理的“高中数学教案简案(精选5篇)”,仅供参考,欢迎大家阅读。

  篇一:高中数学教案简案精选

  教学目标:

  1、结合实际问题情景,理解分层抽样的必要性和重要性;

  2、学会用分层抽样的方法从总体中抽取样本;

  3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

  教学重点:

  通过实例理解分层抽样的方法。

  教学难点:

  分层抽样的步骤。

  教学过程:

  一、问题情境

  1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

  2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

  二、学生活动

  能否用简单随机抽样或系统抽样进行抽样,为什么?

  指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

  由于样本的容量与总体的个体数的比为100∶2500=1∶25,

  所以在各年级抽取的个体数依次是。即40,32,28。

  三、建构数学

  1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

  说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

  ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

  2、三种抽样方法对照表:

  类别

  共同点

  各自特点

  相互联系

  适用范围

  简单随机抽样

  抽样过程中每个个体被抽取的概率是相同的

  从总体中逐个抽取

  总体中的个体数较少

  系统抽样

  将总体均分成几个部分,按事先确定的规则在各部分抽取

  在第一部分抽样时采用简单随机抽样

  总体中的个体数较多

  分层抽样

  将总体分成几层,分层进行抽取

  各层抽样时采用简单随机抽样或系统

  总体由差异明显的几部分组成

  3、分层抽样的步骤:

  (1)分层:将总体按某种特征分成若干部分。

  (2)确定比例:计算各层的个体数与总体的个体数的比。

  (3)确定各层应抽取的样本容量。

  (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样...

高中数学教案模板范文精选6篇

数学教案高中范文精选 高中数学教案模板精选 高中数学教案范文精选6篇

  一位杰出的老师往都会进行教案编写工作,编写教案有利于准确把握教材的重点与难点,进而选择合适的教学方法。下面是由出国留学网编辑为大家整理的“高中数学教案模板范文精选6篇”,仅供参考,欢迎大家阅读本文。

  篇一:高中数学教案模板范文精选

  教学目标:

  1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

  学生全面认识数学的科学价值、应用价值和文化价值。

  2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

  教学重点:

  如何建立实际问题的目标函数是教学的重点与难点。

  教学过程:

  一、问题情境

  问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

  问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

  问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?

  二、新课引入

  导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

  1。几何方面的应用(面积和体积等的最值)。

  2。物理方面的应用(功和功率等最值)。

  3。经济学方面的应用(利润方面最值)。

  三、知识建构

  例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

  说明1解应用题一般有四个要点步骤:设——列——解——答。

  说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

  值及端点值比较即可。

  例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才

  能使所用的材料最省?

  变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?

  说明1这种在定义域内仅有一个极值的函数称单峰函数。

  说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

  S1列:列出函数关系式。

  S2求:求函数的导数。

  S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

  例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

  多大时,才能使电功率最大?最大电功率是多少?

  说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

  例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

  例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;...

人教版高中数学必修4教案大全(汇总)

人教版高中数学必修4教案 数学必修4教案 高中数学教案

高中数学选修1-1《椭圆》教案

高中数学选修1教案 椭圆教案 高三数学教案
高中数学选修1-1《椭圆》教案

  高中数学选修1-1《椭圆》教案【一】

  一、教材分析

  (一)教材的地位和作用

  本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

  (二)教学重点、难点

  1.教学重点:椭圆的定义及其标准方程

  2.教学难点:椭圆标准方程的推导

  (三)三维目标

  1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

  2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。liuxue86.com

  3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

  二、教学方法和手段

  采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

  “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

  三、教学程序

  1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

  2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

  3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

  4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

  5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

  6.例题讲解:通过例题规范学生的解题过程。

  7.巩固练习:以多种题型巩固本节课的教学内容。

  8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

  9.课后作业:面对不同层次的学生,设计了必做题与选做题。

  10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

  四、教学评价

  本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

  高中数学选修1-1《椭圆》教案【二】

  教学准备

  教学目标

  教学目标:1.掌握求适合条件的椭圆的标准方程的方法.

  2.理解椭圆的比值定义,椭圆的准线的定义.

推荐更多