(一)原理介绍
通过一个例题来说明原理。
某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。求该班男生和女生的比例。
方法一:搞笑(也是高效)的方法。男生一人,女生一人,总分160分,平均分80分。男生和女生的比例是1:1。
方法二:假设男生有A,女生有B。
( A*75+B85)/(A+B)=80
整理后A=B,因此男生和女生的比例是1:1。
方法三:
男生:75 5
80
女生:85 5
男生:女生=1:1。
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。
AX+B(1-X)=C
X=(C-B)/(A-B)
1-X=(A-C)/A-B
因此:X:(1-X)=(C-B):(A-C)
上面的计算过程可以抽象为:
A C-B
C
B A-C
这就是所谓的十字相乘法。
十字相乘法使用时要注意几点:
第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
1.(2006年江苏省考)某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是
A.2:5 B.1:3 C.1:4 D.1:5
答案:C
分析:
男教练: 90% 2%
82%
男运动员:80% 8%
男教练:男运动员=2%:8%=1:4
行测真题 | 行测答案 | 行测答题技巧 | 行测题库 | 模拟试题 |