行测数量关系技巧:如何巧解和定最值题

  在考场上人与人拉开差距的除了平常的知识点的积累,还有面对考试题型能够有一个更好的解答思路,下面由出国留学网小编为你精心准备了“行测数量关系技巧:如何巧解和定最值题”,持续关注本站将可以持续获取更多的考试资讯

行测数量关系技巧:如何巧解和定最值题

  行测考试一共五部分,对于很多同学来说就是四部分,很多考生会直接放弃数量关系那一部分,这样做的原因无外乎就是时间不够、题目不会。那今天就带大家来解决耗时不长难度不大的和定最值题目,和定最值一般分3类:

  一、同向极值问题

  例1. 现有21个苹果分给5人,若每人都分到苹果且数量各不相同,则分得最多的人至多分( )个苹果

  A. 8 B. 9 C.10 D.11

  答案:D

  【解析】因为5人分21苹果所以和是一个定值,又因为求最多的那人最多分多少苹果,所以要想让他最多就是让其他人尽可能的少。那么剩下4人分别分1、2、3、4个苹果,即第一最多分21-(1+2+3+4)=11。

  二、逆向极值问题

  例2. 运动会有100名同学报名参加了4个项目中的一项或多项,已知A与B项不能同时报名。如果按照报名参加的项目对同学分组,将报名参加的项目完全一样的同学分到同一个组中,则人数最多的组最少有多少人?

  A. 8 B. 9 C.10 D.11

  答案:C

  【解析】因为100人和是一个定值,最后要求最多的组最少多少人,所以尽可能让其他组人数多,但是又不能比排第一的多,所以我们让所有组人生尽可能接近。因为可以参加一项或多项,参加一项可分4组,两项是5组,3项是2组,所以一共可分11组。用100人除以11组得到9余1,所以最多的组至少是(9+1)=10人。

  三、混合极值

  例3. 某班级共6人参加跳绳比赛,平均每人126下,且跳得最多的人比最少多条76下,如果6个人跳的次数各不相同,问跳得第三多的人最少跳了多少下?

  A.120 B. 116 C.110 D.103

  答案:D

  【解析】因为6人参加平均126下,所以总次数是126✖6。求最少跳多少下,让其他5名尽可能的多。设所求量为x,则排名第四、五、六分别为(x-1)、(x-2)、(x-3),第一名(x-3+76)、第二名(x-3+75),则6人加在一起为126 ✖6。

  (x-1)+ (x-2)+(x-3)+x+(x-3+76)+(x-3+75)=756

  解得x=102.83 则最少103下。

  推荐阅读:

  行测数量关系技巧:和定最值的核心原则

  行测数量关系技巧:年龄问题的巧解方法

  行测数量关系技巧:特值法

  行测数量关系技巧:如何计数?


行测真题 行测答案 行测答题技巧 行测题库 模拟试题
分享

热门关注

公务员行测常识题型怎么做

行测常识题技巧

行测常识判断答题技巧归纳

行测常识判断技巧

公务员行测如何提高做题速度

行测做题速度怎么提高

公务员行测常识题怎么准备

行测常识怎么准备

公务员行测考试题型分布

行测考试题型

行测数量关系技巧:和定最值问题

数量关系技巧

行测数量关系技巧:和定最值解题技巧

数量关系技巧

行测数量关系技巧:和定最值问题6.4

行测数量关系技巧

行测数量关系技巧:特殊模型之“和定最值”

行测数量关系

行测数量关系技巧:和定最值的核心原则

行测和定最值