高中数学三角函数知识点总结

  在高中数学中三角函数一直是非常难的课程,它有哪些知识点呢。以下是由出国留学网编辑为大家整理的“高中数学三角函数知识点总结”,仅供参考,欢迎大家阅读。

  高中数学三角函数知识点总结

  一、锐角三角函数公式

  sin=的对边/斜边

  cos=的邻边/斜边

  tan=的对边/的邻边

  cot=的邻边/的对边

  二、倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1

  tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))

  三、三倍角公式

  sin3=4sinsin(/3+)sin(/3-)

  cos3=4coscos(/3+)cos(/3-)

  tan3a=tanatan(/3+a)tan(/3-a)

  三倍角公式推导

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  辅助角公式

  Asin+Bcos=(A2+B2)(1/2)sin(+t),其中

  sint=B/(A2+B2)(1/2)

  cost=A/(A2+B2)(1/2)

  tant=B/A

  Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B

  四、降幂公式

  sin2()=(1-cos(2))/2=versin(2)/2

  cos2()=(1+cos(2))/2=covers(2)/2

  tan2()=(1-cos(2))/(1+cos(2))

  推导公式

  tan+cot=2/sin2

  tan-cot=-2cot2

  1+cos2=2cos2

  1-cos2=2sin2

  1+sin=(sin/2+cos/2)2

  =2sina(1-sina)+(1-2sina)sina

  =3sina-4sina

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cosa-1)cosa-2(1-sina)cosa

  =4cosa-3cosa

  sin3a=3sina-4sina

  =4sina(3/4-sina)

  =4sina[(3/2)-sina]

  =4sina(sin60-sina)

  =4sina(sin60+sina)(sin60-sina)

  =4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

  =4sinasin(60+a)sin(60-a)

  cos3a=4cosa-3cosa

  =4cosa(cosa-3/4)

  =4cosa[cosa-(3/2)]

  =4cosa(cosa-cos30)

  =4cosa(cosa+cos30)(cosa-cos30)

  =4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-

  30)/2]}

  =-4cosasin(a+30)sin(a-30)

  =-4cosasin[90-(60-a)]sin[-90+(60+a)]

  =-4cosacos(60-a)[-cos(60+a)]

  =4cosacos(60-a)cos(60+a)

  上述两式相比可得

  tan3a=tanatan(60-a)tan(60+a)

  五、半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin2(a/2)=(1-cos(a))/2

  cos2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  六、三角和

  sin(++)=sincoscos+cossincos+coscossin

  -sinsinsin

  cos(++)=coscoscos-cossinsin-sincossin-sinsincos

  tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

  七、两角和差

  cos(+)=coscos-sinsin

  cos(-)=coscos+sinsin

  sin()=sincoscossin

  tan(+)=(tan+tan)/(1-tantan)

  tan(-)=(tan-tan)/(1+tantan)

  八、和差化积

  sin+sin=2sin[(+)/2]cos[(-)/2]

  sin-sin=2cos[(+)/2]sin[(-)/2]

  cos+cos=2cos[(+)/2]cos[(-)/2]

  cos-cos=-2sin[(+)/2]sin[(-)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  九、积化和差

  sinsin=[cos(-)-cos(+)]/2

  coscos=[cos(+)+cos(-)]/2

  sincos=[sin(+)+sin(-)]/2

  cossin=[sin(+)-sin(-)]/2

  十、诱导公式

  sin(-)=-sin

  cos(-)=cos

  tan(—a)=-tan

  sin(/2-)=cos

  cos(/2-)=sin

  sin(/2+)=cos

  cos(/2+)=-sin

  sin(-)=sin

  cos(-)=-cos

  sin(+)=-sin

  cos(+)=-cos

  tanA=sinA/cosA

  tan(/2+)=-cot

  tan(/2-)=cot

  tan(-)=-tan

  tan(+)=tan

  诱导公式记背诀窍:奇变偶不变,符号看象限

  十一、万能公式

  sin=2tan(/2)/[1+tan(/2)]

  cos=[1-tan(/2)]/1+tan(/2)]

  tan=2tan(/2)/[1-tan(/2)]

  十二、其它公式

  (1)(sin)2+(cos)2=1

  (2)1+(tan)2=(sec)2

  (3)1+(cot)^2=(csc)^2

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  证:

  A+B=-C

  tan(A+B)=tan(-C)

  (tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得证

  同样可以得证,当x+y+z=n(nZ)时,该关系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC

  (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC

  (9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0

  cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及

  sin2()+sin2(-2/3)+sin2(+2/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  拓展阅读:学好函数的方法

  一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则

  而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。

  很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

  二、牢记几种基本初等函数及其相关性质、图象、变换

  中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。

  还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

  三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题

  翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。

分享

热门关注

高三下册数学知识点是什么

高三下册数学知识点

高二上册数学有哪些知识点

高二上册数学知识点

高三数学有哪些复习方法及经验

数学复习方法及经验

高三数学提升成绩的方法有哪些

高三数学提升成绩

高三下册数学知识点有哪些

高三下册数学

高中数学三角函数公式大全

三角函数

怎样学好高中数学三角函数

三角函数

高中数学函数知识点归纳

高中数学

高中数学必修1知识点总结

高中知识点

高中数学知识点归纳总结

高中数学知识点