出国留学网专题频道三角函数模型的简单应用教案栏目,提供与三角函数模型的简单应用教案相关的所有资讯,希望我们所做的能让您感到满意!

高中数学必修4《三角函数模型的简单应用》教案

高中数学必修4 三角函数模型的简单应用教案 高二数学教案
高中数学必修4《三角函数模型的简单应用》教案

  高中数学必修4《三角函数模型的简单应用》教案

  教学准备

  教学目标

  掌握三角函数模型应用基本步骤:

  (1)根据图象建立解析式;

  (2)根据解析式作出图象;

  (3)将实际问题抽象为与三角函数有关的简单函数模型.

  教学重难点

  .利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

  教学过程

  一、练习讲解:《习案》作业十三的第3、4题

  3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

  (1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

  (1) 选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值

  (精确到0.001).

  (2) 一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离) ,该船何时能进入港口?在港口能呆多久?

  (3) 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3

  米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?liuxue86.com

  本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

  练习:教材P65面3题

  三、小结:1、三角函数模型应用基本步骤:

  (1)根据图象建立解析式;

  (2)根据解析式作出图象;

  (3)将实际问题抽象为与三角函数有关的简单函数模型.

  2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

  四、作业《习案》作业十四及十五。

  教案设计频道小编推荐:高中数学教案 |

与三角函数模型的简单应用教案相关的高中教案

推荐更多