出国留学网专题频道证明题栏目,提供与证明题相关的所有资讯,希望我们所做的能让您感到满意!

2023年考研数学证明题各出题方向及考点分析

考研 考研数学 考研数学证明题

  在考研数学当中,证明题这一考试题型虽然只出现一个大题,但分数占比依旧相当大,基本上考生在证明题上花费的时间和得到的分数都不成正比,这也说明了这一题的难度之大,那么接下来就和小编一起来看看2023年考研数学证明题各出题方向及考点分析吧!

  1、极限的四则运算法则

  2、极限的脱帽定理

  3、无穷小的定阶定理

  4、函数连续性定理的证明

  5、函数奇偶性与周期性的证明

  6、费马定理、柯西定理及牛顿莱布尼茨定理的证明

  7、洛必达法则证明

  8、函数凹凸性判定法则的证明

  9、不等式的证明与方程根的证明

  10、含有一个中值或者两个中值的证明

  11、关于定积分等式与不等式的证明

  12、定积分重要性质与结论的证明

  13、曲线积分与路径无关性的证明(数学一)

  14、格林公式与高斯定理的证明(数学一)

  15、证明常数项级数的收敛性

  16、矩阵秩的相关证明

  17、证明向量小组线性无关

  18、证明方程组的基础解系及性质

  19、证明两个矩阵相似与合同的方法

  20、证明矩阵是正定矩阵的方法

  21、证明函数为随机变量的分布函数的方法

  22、证明两个随机变量相互独立与不相关

  23、证明一个统计量服从卡方分布、t分布及F分布

  24、证明一个估计量为无偏估计

考研初试各科分数组成:

  政治:

  马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分,满分100分。

  英语:

  完型10分,阅读A40分,阅读B(即新题型)10分,翻译(英语一10分,英语二15分),大作文(英语一20分,英语二15分),小作文10分,满分100分。

  数学:

  理工类(数学一、数学二) 、经济类(数学三)

  数学一:高数56%、线性代数22%、概率统计22%

  数学二:高数78%、线性代数22%、不考概率统计

  数学三:高数56%、线性代数22%、概率统计22%

  数学满分150分。

与证明题相关的考研数学

2020考研数学复习:高数爱出证明题的几大知识点

考研数学复习 考研高数知识点 高数证明题

  暑假是考研路上或不可缺的黄金时光,大家一定要在这个时间里面好好的抓紧时间复习,下面由出国留学网小编为你精心准备了“2020考研数学复习:高数爱出证明题的几大知识点”,持续关注本站将可以持续获取更多的考试资讯!

2020考研数学复习:高数爱出证明题的几大知识点

  考研数学的试卷,高数题占据了一部分分值,要想将这部分分值拿到手,就要对高数知识了如指掌。为此,中公考研小编整理了“2020考研数学:高数这些知识点爱出证明题!”的文章,希望对大家有所帮助。

  ►六个知识点

  一、数列极限的证明

  数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

  二、微分中值定理的相关证明

  微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

  1.零点定理和介质定理;

  2.微分中值定理;

  包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

  3.微分中值定理

  积分中值定理的作用是为了去掉积分符号。

  在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

  三、方程根的问题

  包括方程根唯一和方程根的个数的讨论。

  四、不等式的证明

  五、定积分等式和不等式的证明

  主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

  六、积分与路径无关的五个等价条件

  这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

  ►考研数学证明题的24个常见的命题点

  1.极限的四则运算法则

  2.极限的脱帽定理

  3.无穷小的定阶定理

  4.函数连续性定理的证明

  5.函数奇偶性与周期性的证明

  6.费马定理、柯西定理及牛顿莱布尼茨定理的证明

  7.洛必达法则证明

  8.函数凹凸性判定法则的证明

  9.不等式的证明与方程根的证明

  10.含有一个中值或者两个中值的证明

  11.关于定积分等式与不等式的证明

  12.定积分重要性质与结论的证明

  13.曲线积分与路径无关性的证明(数学一)

  14.格林公式与高斯定理的证明(数学一)

  15.证明常数项级数的收敛性

  16.矩阵秩的相关证明

  17.证明向量小组线性无关

  18.证明方程组的基础解系及性质

  19.证明两个矩阵相似与合同的方法

  20.证明矩阵是正定矩阵的方...

与证明题相关的考研数学

2020考研数学高数暑期复习:三步破解考研数学证明题

考研数学复习 数学考研复习资料 考研数学暑期复习资料

  考研如过独木桥,在千军万马中脱颖而出总是需要想象不到的汗水和努力,为了帮助考研小伙伴更好的复习,下面由出国留学网小编为你精心准备了“2020考研数学高数暑期复习:三步破解考研数学证明题”,持续关注本站将可以持续获取更多的考试资讯!

2020考研数学高数暑期复习:三步破解考研数学证明题

  在考研数学中,答题步骤十分重要,其中证明题的解答更是要有清晰的思维逻辑。

  第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。

  因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

  因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如2009年直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。

  第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

  再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为"逆推"。

  如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

  在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

  推荐阅读:

<...

与证明题相关的考研数学

中考数学几何证明题答题技巧及解题思路

中考数学 中考数学答题技巧 中考答题技巧

  中考数学频道为大家提供中考数学几何证明题答题技巧及解题思路,赶紧看看你会了没?更多中考数学复习资料请关注我们网站的更新!

  中考数学几何证明题答题技巧及解题思路

  一要审题。

  很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

  二要记。

  这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

  三要引申。

  难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

  四要分析综合法。

  分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有

  1.对顶角相等

  2.平行线里同位角相等、内错角相等

  3.余角、补角定理

  4.角平分线定义

  5.等腰三角形

  6.全等三角形的对应角等等方法。

  结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

  五要归纳总结。

  很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

  以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:

  (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

  (2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。...

与证明题相关的中考数学

2018考研数学常考证明题答题技巧

考研数学 考研数学答题技巧 考研数学复习方法

  出国留学网考研网为大家提供2018考研数学常考证明题答题技巧,更多考研资讯请关注我们网站的更新!

  2018考研数学常考证明题答题技巧

  考研数学必考证明题,证明题都会怎么出?怎么证?下面整理了一些常出的证明题,同时分享一些好的方法,18考生注意学习和掌握。

  ☆题目篇☆

  考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:

  数列极限的证明

  数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

  微分中值定理的相关证明

  微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

  1.零点定理和介质定理;

  2.微分中值定理;

  包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

  3.微分中值定理

  积分中值定理的作用是为了去掉积分符号。

  在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

  方程根的问题

  包括方程根唯一和方程根的个数的讨论。

 

 不等式的证明

  定积分等式和不等式的证明

  主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

  积分与路径无关的五个等价条件

  这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

  ☆方法篇☆

  以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。那么,遇到这类的证明题,我们应该用什么方法解题呢?

  结合几何意义记住基本原理

  重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

  因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的...

与证明题相关的考研数学

中考数学几何证明题定理汇总

中考数学 中考数学答题技巧 中考复习资料

  出国留学中考网为大家提供中考数学几何证明题定理汇总,更多中考资讯请关注我们网站的更新!

  中考数学几何证明题定理汇总

  证明题的思路

  很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

  对于证明题,有三种思考方式:

  (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

  (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

  同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

  例如:

  可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

  (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

  初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

  证明题要用到

  哪些原理?

  要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。

  下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

  一、证明两线段相等

  1.两全等三角形中对应边相等。

  2.同一三角形中等角对等边。

  3.等腰三角形顶角的平分线或底边的高平分底边。

  4.平行四边形的对边或对角线被交点分成的两段相等。

  5.直角三角形斜边的中点到三顶点距离相等。

  6.线段垂直平分线上任意一点到线段两段距离相等。

  7.角平分线上任一点到角的两边距离相等。

  8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

  9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

  10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

  11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

  12.两圆的内(外)公切线的长相等。

  13.等于同一线段的两条线段相等。

  二、证明两个角相等

  1.两全等三角形的对应角相等。

  2.同一三角形中等边对等角。

  3.等腰三角形中,底边上的中线(或高)平分顶角。

  4.两条平行线的同位角、内错角或平行四边形的对角相等。

  5.同角(或等角)的余角(或补角)相等。

  6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

与证明题相关的中考数学

2018考研数学证明题怎样复习

考研数学 考研数学怎么复习 考研数学复习方法

  出国留学考研网为大家提供2018考研数学证明题怎样复习,更多考研资讯请关注我们网站的更新!

  2018考研数学证明题怎样复习

  一、求导公式的证明

  2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

  当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。

  类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。

  二、微分中值定理的证明

  这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

  费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

  费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

  闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?

  前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是...

与证明题相关的考研数学

考研数学证明题答题技巧

考研数学 考研数学答题技巧 考研数学复习资料

  出国留学网考研网为大家提供考研数学证明题答题技巧,更多考研资讯请关注我们网站的更新!

  考研数学证明题答题技巧

  证明题是数学题型中考生比较头疼的一类,从基础复习开始,就需要大家多多总结,掌握方法技巧。

  1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。

  对于那些经常使用如上方法的考生来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的考生来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。

  小编精心为您推荐:

  

与证明题相关的考研数学

考研数学证明题答题技巧:把握三个步骤

考研数学 考研数学答题技巧 考研数学证明题答题技巧

  出国留学网考研网为大家提供考研数学证明题答题技巧:把握三个步骤,更多考研资讯请关注我们网站的更新!

  考研数学证明题答题技巧:把握三个步骤

  ▶1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  ▶2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  ▶3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

  小编精心为您推荐:

  考研数学考场注意事项  

  <...

与证明题相关的考研数学

2015考研数学(二)真题解析:中值定理证明题

2015考研数学真题 考研数学真题解析 考研数学二真题解析
2015考研数学(二)真题解析:中值定理证明题

  出国留学网考研数学频道为大家提供2015考研数学(二)真题解析:中值定理证明题,希望大家喜欢!

  2015考研数学(二)真题解析:中值定理证明题

  在考研数学中,中值定理的证明题是一个重要考点,也是一个难点,很多考生在复习数学的时候,虽然做了很多这类题,但每当遇到这种题的时候,还是发憷,甚至畏惧,在考试前有不少考生还是担心怕遇到这种题,但2015年的考研数学试卷却出乎同学们的意料,数学(一)和数学(三)没有中值定理的证明题,只有数学(二)中有一道与中值定理有关的题,但也不是纯正的中值定理证明题,下面我们就来分析一下这道题及它给我们的启示。

  从上面这题的证明来看,此题并不难,只要根据题意先写出切线方程和切线与x轴的交点,然后运用单调性和一次中值定理即可证出所要结论,从严格意义上讲,此题算不上一个纯正的中值定理证明题。结合前些年的考题可知,中值定理的证明题虽然较其它知识点的考题稍难,但并没有特别难或特别怪的题,这提示2016年及以后的广大考生,在复习数学的时候,要立足于基本理论和方法的复习,不要去钻偏题、怪题,不要钻牛角尖,那样做会得不偿失,会偏离考研数学的考试方向。

  2015考研真题及考研真题答案汇总 >>>

点击查看

  推荐阅读:

  2015考研英语真题及答案专题

  2015年考研数学真题及答案专题

  2015年考研政治真题及答案专题

  <...

与证明题相关的考研数学

推荐更多